Optimizing Conversational Product Recommendation via Reinforcement Learning
- URL: http://arxiv.org/abs/2507.01060v1
- Date: Mon, 30 Jun 2025 00:59:58 GMT
- Title: Optimizing Conversational Product Recommendation via Reinforcement Learning
- Authors: Kang Liu,
- Abstract summary: We propose a reinforcement learning-based approach to optimize conversational strategies for product recommendation across diverse industries.<n>We outline the conceptual framework, highlight key innovations, and discuss the implications for scalable, personalized recommendation in enterprise environments.
- Score: 6.988934943372354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a reinforcement learning-based approach to optimize conversational strategies for product recommendation across diverse industries. As organizations increasingly adopt intelligent agents to support sales and service operations, the effectiveness of a conversation hinges not only on what is recommended but how and when recommendations are delivered. We explore a methodology where agentic systems learn optimal dialogue policies through feedback-driven reinforcement learning. By mining aggregate behavioral patterns and conversion outcomes, our approach enables agents to refine talk tracks that drive higher engagement and product uptake, while adhering to contextual and regulatory constraints. We outline the conceptual framework, highlight key innovations, and discuss the implications for scalable, personalized recommendation in enterprise environments.
Related papers
- Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions [52.21847626165085]
Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types.<n>However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations.<n>We propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions.
arXiv Detail & Related papers (2025-08-07T13:21:00Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.<n>We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Generative Recommender with End-to-End Learnable Item Tokenization [51.82768744368208]
We introduce ETEGRec, a novel End-To-End Generative Recommender that unifies item tokenization and generative recommendation into a cohesive framework.<n>ETEGRec consists of an item tokenizer and a generative recommender built on a dual encoder-decoder architecture.<n>We develop an alternating optimization technique to ensure stable and efficient end-to-end training of the entire framework.
arXiv Detail & Related papers (2024-09-09T12:11:53Z) - A Novel Behavior-Based Recommendation System for E-commerce [3.7224375916680823]
This study proposes a behavior-based recommender system that leverages customers' natural behaviors, such as browsing and clicking, on e-commerce platforms.
The proposed recommendation system involves clustering active customers, determining neighborhoods, collecting similar users, calculating product reputation based on similar users, and recommending high-reputation products.
The proposed method outperforms benchmark methods in experiments conducted using a behavior dataset from the well-known e-commerce site Alibaba.
arXiv Detail & Related papers (2024-03-27T13:12:41Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Aligning Recommendation and Conversation via Dual Imitation [56.236932446280825]
We propose DICR (Dual Imitation for Conversational Recommendation), which designs a dual imitation to explicitly align the recommendation paths and user interest shift paths.
By exchanging alignment signals, DICR achieves bidirectional promotion between recommendation and conversation modules.
Experiments demonstrate that DICR outperforms the state-of-the-art models on recommendation and conversation performance with automatic, human, and novel explainability metrics.
arXiv Detail & Related papers (2022-11-05T08:13:46Z) - Recommendation Fairness: From Static to Dynamic [12.080824433982993]
We discuss how fairness could be baked into reinforcement learning techniques for recommendation.
We argue that in order to make further progress in recommendation fairness, we may want to consider multi-agent (game-theoretic) optimization, multi-objective (Pareto) optimization.
arXiv Detail & Related papers (2021-09-05T21:38:05Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
Reinforcement learning has shown great promise in optimizing long-term user interest in recommender systems.
Existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy.
We propose a meta-level model-based reinforcement learning approach for fast user adaptation.
arXiv Detail & Related papers (2020-12-04T08:58:35Z) - INSPIRED: Toward Sociable Recommendation Dialog Systems [51.1063713492648]
In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner.
We present a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations.
Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations.
arXiv Detail & Related papers (2020-09-29T21:03:44Z) - Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems [58.724629408229205]
We demonstrate how traditional supervised learning and a simulator-free adversarial learning method can be used to achieve performance comparable to state-of-the-art RL-based methods.
Our main goal is not to beat reinforcement learning with supervised learning, but to demonstrate the value of rethinking the role of reinforcement learning and supervised learning in optimizing task-oriented dialogue systems.
arXiv Detail & Related papers (2020-09-21T12:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.