A Novel Behavior-Based Recommendation System for E-commerce
- URL: http://arxiv.org/abs/2403.18536v1
- Date: Wed, 27 Mar 2024 13:12:41 GMT
- Title: A Novel Behavior-Based Recommendation System for E-commerce
- Authors: Reza Barzegar Nozari, Mahdi Divsalar, Sepehr Akbarzadeh Abkenar, Mohammadreza Fadavi Amiri, Ali Divsalar,
- Abstract summary: This study proposes a behavior-based recommender system that leverages customers' natural behaviors, such as browsing and clicking, on e-commerce platforms.
The proposed recommendation system involves clustering active customers, determining neighborhoods, collecting similar users, calculating product reputation based on similar users, and recommending high-reputation products.
The proposed method outperforms benchmark methods in experiments conducted using a behavior dataset from the well-known e-commerce site Alibaba.
- Score: 3.7224375916680823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The majority of existing recommender systems rely on user ratings, which are limited by the lack of user collaboration and the sparsity problem. To address these issues, this study proposes a behavior-based recommender system that leverages customers' natural behaviors, such as browsing and clicking, on e-commerce platforms. The proposed recommendation system involves clustering active customers, determining neighborhoods, collecting similar users, calculating product reputation based on similar users, and recommending high-reputation products. To overcome the complexity of customer behaviors and traditional clustering methods, an unsupervised clustering approach based on product categories is developed to enhance the recommendation methodology. This study makes notable contributions in several aspects. Firstly, a groundbreaking behavior-based recommendation methodology is developed, incorporating customer behavior to generate accurate and tailored recommendations leading to improved customer satisfaction and engagement. Secondly, an original unsupervised clustering method, focusing on product categories, enables more precise clustering and facilitates accurate recommendations. Finally, an approach to determine neighborhoods for active customers within clusters is established, ensuring grouping of customers with similar behavioral patterns to enhance recommendation accuracy and relevance. The proposed recommendation methodology and clustering method contribute to improved recommendation performance, offering valuable insights for researchers and practitioners in the field of e-commerce recommendation systems. Additionally, the proposed method outperforms benchmark methods in experiments conducted using a behavior dataset from the well-known e-commerce site Alibaba.
Related papers
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers [29.739736497044664]
We present a training-free approach for optimizing generative recommenders.
We propose a generative explore-exploit method that can not only exploit generated items with high engagement, but also actively explore and discover hidden population preferences.
arXiv Detail & Related papers (2024-06-07T20:41:59Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
arXiv Detail & Related papers (2024-05-03T15:02:55Z) - Application of Machine Learning for Online Reputation Systems [0.4125187280299248]
This paper proposes a new reputation system using machine learning to predict reliability of consumers from consumer profile.
The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-Folds cross validation.
arXiv Detail & Related papers (2022-09-10T12:31:40Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
We propose a recommender system method using a graph-based model associated with the similarity of users' ratings.
By utilizing the advantages of Autoencoder feature extraction, we extract new features based on all combined attributes.
The experimental results on the MovieLens dataset show that the proposed algorithm outperforms many existing recommendation algorithms on recommendation accuracy.
arXiv Detail & Related papers (2021-11-06T10:47:45Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
arXiv Detail & Related papers (2020-07-07T17:13:20Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.