論文の概要: MID-INFRARED (MIR) OCT-based inspection in industry
- arxiv url: http://arxiv.org/abs/2507.01074v1
- Date: Tue, 01 Jul 2025 11:25:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.834672
- Title: MID-INFRARED (MIR) OCT-based inspection in industry
- Title(参考訳): MID-INFRARED (MIR) OCTによる産業検査
- Authors: N. P. García-de-la-Puente, Rocío del Amor, Fernando García-Torres, Niels Møller Israelsen, Coraline Lapre, Christian Rosenberg Petersen, Ole Bang, Dominik Brouczek, Martin Schwentenwein, Kevin Neumann, Niels Benson, Valery Naranjo,
- Abstract要約: 本稿では,中赤外(MIR)光コヒーレンス・トモグラフィー(OCT)システムについて,異なる物質を透過し,地中不規則を検出するツールとして評価することを目的とする。
- 参考スコア(独自算出の注目度): 32.33406552316584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to evaluate mid-infrared (MIR) Optical Coherence Tomography (OCT) systems as a tool to penetrate different materials and detect sub-surface irregularities. This is useful for monitoring production processes, allowing Non-Destructive Inspection Techniques of great value to the industry. In this exploratory study, several acquisitions are made on composite and ceramics to know the capabilities of the system. In addition, it is assessed which preprocessing and AI-enhanced vision algorithms can be anomaly-detection methodologies capable of detecting abnormal zones in the analyzed objects. Limitations and criteria for the selection of optimal parameters will be discussed, as well as strengths and weaknesses will be highlighted.
- Abstract(参考訳): 本稿では,中赤外(MIR)光コヒーレンス・トモグラフィー(OCT)システムについて,異なる物質を透過し,地中不規則を検出するツールとして評価することを目的とする。
これは生産プロセスの監視に役立ち、業界にとって大きな価値を持つ非破壊的検査技術を可能にする。
本研究は, 複合材料およびセラミックスを用いて, システムの性能を知るためにいくつかの買収を行ったものである。
さらに、分析対象の異常ゾーンを検出することができる異常検出手法として、前処理とAIによる視覚アルゴリズムを評価できる。
最適パラメータの選択の限界と基準について論じるとともに、強度や弱点も強調する。
関連論文リスト
- Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
RGBおよびTIR(熱赤外)変調を利用したマルチスペクトル物体検出は,課題として広く認識されている。
モダリティと堅牢な融合戦略の両方から特徴を効果的に抽出するだけでなく、スペクトルの相違といった問題に対処する能力も必要である。
本稿では,高パフォーマンス単一モードモデルのシームレスな最適化が可能な,効率的かつ容易にデプロイ可能なマルチスペクトルオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-27T12:18:39Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - A Systematic Review of Available Datasets in Additive Manufacturing [56.684125592242445]
視覚およびその他のセンサー技術を組み込んだその場監視により、追加製造プロセス中に広範なデータセットの収集が可能になる。
これらのデータセットは、製造された出力の品質を判断し、機械学習を使用して欠陥を検出する可能性がある。
本稿では,AMプロセスから派生したオープン画像ベースデータセットの利用可能性について検討する。
論文 参考訳(メタデータ) (2024-01-27T16:13:32Z) - Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies [2.4541568670428915]
本稿では, 産業プラントの知的状態モニタリングと故障検出, 診断方法の概要について述べる。
最もポピュラーで最先端のディープラーニング(DL)と機械学習(ML)アルゴリズムは、産業プラントの状態監視、故障検出、診断のためのアルゴリズムである。
テネシー・イーストマン・プロセス(TEP)を利用したアルゴリズムの精度と仕様の比較を行った。
論文 参考訳(メタデータ) (2024-01-03T21:35:03Z) - Automated Semiconductor Defect Inspection in Scanning Electron
Microscope Images: a Systematic Review [4.493547775253646]
機械学習アルゴリズムは、半導体サンプルの欠陥を正確に分類し、特定するために訓練することができる。
畳み込みニューラルネットワークはこの点において特に有用であることが証明されている。
本稿では,SEM画像における半導体欠陥の自動検査の現状について概観する。
論文 参考訳(メタデータ) (2023-08-16T13:59:43Z) - Spectral Analysis of Marine Debris in Simulated and Observed
Sentinel-2/MSI Images using Unsupervised Classification [0.0]
本研究では,Sentinel-2ミッションのMultispectral Instrument(MSI)と機械学習アルゴリズムを組み合わせたRTMシミュレーションデータを用いた。
その結果, 汚染物質のスペクトル挙動は, ポリマーの種類や画素被覆率などの影響を受けていることがわかった。
これらの知見は、海洋プラスチック汚染を検知するためのリモートセンシングアプリケーションにおける将来の研究を導くことができる。
論文 参考訳(メタデータ) (2023-06-26T18:46:47Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。