論文の概要: DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2507.01383v1
- Date: Wed, 02 Jul 2025 05:57:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.065198
- Title: DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
- Title(参考訳): DARTS:Federated Sequential Recommendationにおけるターゲットマニピュレーションのためのデュアルビューアタックフレームワーク
- Authors: Qitao Qin, Yucong Luo, Zhibo Chu,
- Abstract要約: フェデレートされたレコメンデーション(FedRec)は、パーソナライズされたモデルの分散トレーニングを可能にすることによって、ユーザのプライバシを保護します。
本稿では,DV-FSRと呼ばれる新しいデュアルビューアタックフレームワークを提案する。このフレームワークは,サンプリングに基づく明示的戦略と対照的な学習に基づく暗黙的勾配戦略を組み合わせて,協調攻撃を編成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
- Abstract(参考訳): フェデレートされたレコメンデーション(FedRec)は、パーソナライズされたモデルの分散トレーニングを可能にすることによって、ユーザのプライバシを保護します。
商業的・社会的影響を考慮したFedRecシステムにおける標的攻撃に関する重要な研究が進められている。
しかしながら、この研究の多くは、レコメンデーションモデルの微分ロバスト性を見落としている。
さらに,本研究では,既存の攻撃手法がFSR(Federated Sequential Recommendation)タスクにおいて限られた効果しか得られないことが実証された。
これらの観測により、我々はFSRの標的攻撃を調査することに集中し、DV-FSRと呼ばれる新しいデュアルビュー攻撃フレームワークを提案する。
この攻撃方法は、サンプリングに基づく明示的戦略と対照的な学習に基づく暗黙的勾配戦略を一意に組み合わせて、協調攻撃を編成する。
さらに,FSRにおける標的攻撃に適した特定の防御機構を導入し,攻撃方法の緩和効果を評価することを目的とした。
大規模実験により,提案手法が代表的逐次モデルに対して有効であることを示す。
私たちのコードは公開されています。
関連論文リスト
- Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models [12.524811181751577]
我々は,BCSDモデルに対する敵攻撃に対する新たな最適化を提案する。
特に,攻撃目標は,モデル予測を特定の範囲に制限することである。
我々の攻撃は、モデル決定境界の解釈において、ブラックボックス、モデルに依存しない説明器の優れた能力を活用する。
論文 参考訳(メタデータ) (2025-06-05T08:29:19Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
本稿では,RAGシステムに対する敵攻撃について検討し,その脆弱性を同定する。
このタスクは、ターゲット文書を検索する非知覚的な摂動を見つけることを目的としており、もともとはトップ$k$の候補セットから除外されていた。
本稿では、攻撃者とターゲットRAG間の相互作用を追跡する強化学習ベースのフレームワークであるReGENTを提案する。
論文 参考訳(メタデータ) (2025-05-24T08:19:25Z) - DV-FSR: A Dual-View Target Attack Framework for Federated Sequential Recommendation [4.980393474423609]
フェデレートされたレコメンデーション(FedRec)は、パーソナライズされたモデルの分散トレーニングを可能にすることによって、ユーザのプライバシを保護します。
本稿では,DV-FSRと呼ばれる新しいデュアルビューアタックフレームワークを提案する。このフレームワークは,サンプリングに基づく明示的戦略と対照的な学習に基づく暗黙的勾配戦略を組み合わせて,協調攻撃を編成する。
論文 参考訳(メタデータ) (2024-09-10T15:24:13Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Raccoon: Prompt Extraction Benchmark of LLM-Integrated Applications [8.51254190797079]
本稿では,抽出攻撃に対するモデルの感受性を包括的に評価するRacoonベンチマークを提案する。
本手法は,無防備シナリオと防御シナリオの両方でモデルを評価する。
本研究は,防衛の欠如を契機に,盗難を助長するための普遍的感受性を強調し,保護時に顕著なレジリエンスを示すOpenAIモデルを示した。
論文 参考訳(メタデータ) (2024-06-10T18:57:22Z) - Securing Recommender System via Cooperative Training [78.97620275467733]
本稿では,データを相互に強化する3つの協調モデルを用いたTCD(Triple Cooperative Defense)を提案する。
既存の攻撃が二段階最適化と効率のバランスをとるのに苦労していることを考えると、リコメンダシステムにおける毒殺攻撃を再考する。
我々はゲームベースのコトレーニングアタック(GCoAttack)を提案し,提案したCoAttackとTCDをゲーム理論のプロセスとする。
論文 参考訳(メタデータ) (2024-01-23T12:07:20Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。