論文の概要: Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
- arxiv url: http://arxiv.org/abs/2507.01478v1
- Date: Wed, 02 Jul 2025 08:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.108659
- Title: Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
- Title(参考訳): 産業用金属材料のアクティブ制御点に基づく6DoF追跡
- Authors: Chentao Shen, Ding Pan, Mingyu Mei, Zaixing He, Xinyue Zhao,
- Abstract要約: アクティブ制御点に基づく新しい6DoFポーズトラッキング手法を提案する。
この方法は、6DoFのポーズベースのレンダリングではなく、画像制御ポイントを使用してエッジ特徴を積極的に生成する。
提案手法は,データセット評価と実世界のタスクの両方において効果的に機能する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.
- Abstract(参考訳): 近年、視覚的ポーズトラッキングは産業の文脈においてますます重要な役割を担っている。
しかし, 産業用金属オブジェクトのポーズトラッキングは, 金属オブジェクトの反射特性のため, 特に実世界の環境において困難な課題である。
そこで本研究では,アクティブな制御点に基づく6DoFポーズトラッキング手法を提案する。
この方法は、6DoFのポーズベースのレンダリングではなく、エッジ特徴を積極的に生成するために画像制御ポイントを使用し、最適化変数として機能する。
また、ロバスト性を改善するために最適制御点回帰法を導入する。
提案手法はデータセット評価と実世界のタスクの両方において効果的に機能し,産業用金属オブジェクトのリアルタイム追跡に有効なソリューションを提供する。
私たちのソースコードは、https://github.com/tomatoma00/ACPTracking.comで公開されています。
関連論文リスト
- Out-of-Bounding-Box Triggers: A Stealthy Approach to Cheat Object Detectors [18.23151352064318]
本稿では,境界ボックスの外側で動作し,モデルに検出不能なオブジェクトを描画する不明瞭な対向トリガを提案する。
高品質トリガ作成のためのFG技術とUAPGD(Universal Auto-PGD)最適化戦略を提案することにより、このアプローチをさらに強化する。
本手法の有効性を実験により検証し,デジタル環境と物理環境の両方で高い性能を示す。
論文 参考訳(メタデータ) (2024-10-14T02:15:48Z) - Leveraging Object Priors for Point Tracking [25.030407197192]
ポイントトラッキングは、コンピュータビジョンにおける基本的な問題であり、多くのARやロボット工学への応用がある。
本稿では,対象の先行点に注意を向ける新たな対象性正規化手法を提案する。
提案手法は,3点追跡ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T16:48:42Z) - Engineering an Efficient Object Tracker for Non-Linear Motion [0.0]
マルチオブジェクトトラッキングの目標は、シーン内のすべてのオブジェクトを検出し、追跡することである。
このタスクは、動的および非線形な動きパターンを含むシナリオの場合、特に困難である。
本稿では,これらのシナリオに特化して設計された新しい多目的トラッカーであるDeepMoveSORTを紹介する。
論文 参考訳(メタデータ) (2024-06-30T15:50:54Z) - Fast and Resource-Efficient Object Tracking on Edge Devices: A
Measurement Study [9.976630547252427]
マルチオブジェクトトラッキング(MOT)は動く物体を検出し、実際のシーンがビデオに写っているときにフレームによって位置をトラッキングする。
本稿では,オブジェクト追跡における性能問題とエッジ固有の最適化機会について検討する。
EMOと呼ばれるエッジ固有のパフォーマンス最適化戦略をいくつか提示し、リアルタイムオブジェクト追跡を高速化する。
論文 参考訳(メタデータ) (2023-09-06T02:25:36Z) - BEVTrack: A Simple and Strong Baseline for 3D Single Object Tracking in Bird's-Eye View [56.77287041917277]
3Dシングルオブジェクトトラッキング(SOT)はコンピュータビジョンの基本課題であり、自律運転のようなアプリケーションに不可欠なことを証明している。
本稿では,単純で効果的なベースライン手法であるBEVTrackを提案する。
Bird's-Eye View (BEV) における目標運動を推定して追跡を行うことにより、BEVTrackは、ネットワーク設計、トレーニング目標、トラッキングパイプラインなど、様々な側面から驚くほどの単純さを示しながら、優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-05T12:42:26Z) - PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point
Tracking [90.29143475328506]
本稿では,大規模合成データセットとデータ生成フレームワークであるPointOdysseyを紹介する。
私たちのゴールは、自然主義的な動きを持つ長いビデオに重点を置いて、最先端の技術を推し進めることです。
実世界のモーションキャプチャーデータを用いて変形可能なキャラクタをアニメーション化し、モーションキャプチャー環境に合わせて3Dシーンを構築し、リアルビデオ上で構造から抽出したトラジェクトリを用いてカメラ視点を描画する。
論文 参考訳(メタデータ) (2023-07-27T17:58:11Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
本稿では,ニューラルネットワークによってパラメータ化される暗黙的値関数として,オブジェクト点群と相対的タスク軌跡の両方を符号化する新しいオブジェクト表現であるNeural Motion Fieldsを提案する。
このオブジェクト中心表現は、SE(3)空間上の連続分布をモデル化し、サンプリングベースのMPCを利用して、この値関数を最適化することで、反応的に把握することができる。
論文 参考訳(メタデータ) (2022-06-29T18:47:05Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
本稿では,自己教師対象検出のための制御可能なGANを用いたエンドツーエンド分析合成フレームワークを提案する。
オブジェクトの合成と検出を学習するために、ボックスアノテーションを使用せずに、実世界のイメージのコレクションを使用します。
我々の研究は、制御可能なGAN画像合成という新しいパラダイムを導入することで、自己教師対象検出の分野を前進させる。
論文 参考訳(メタデータ) (2021-10-19T11:04:05Z) - Polygonal Point Set Tracking [50.445151155209246]
本稿では,学習に基づく多角形点集合追跡手法を提案する。
私たちのゴールは、ターゲットの輪郭上の対応する点を追跡することです。
本稿では,部分歪みとテキストマッピングに対する本手法の視覚効果について述べる。
論文 参考訳(メタデータ) (2021-05-30T17:12:36Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
本稿では, 屋内環境におけるオブジェクトのアクティブビジュアルサーチ(AVS)の最適ポリシーを, オンライン設定で学習する問題に焦点をあてる。
提案手法はエージェントの現在のポーズとRGB-Dフレームを入力として使用する。
提案手法を利用可能なAVDベンチマークで検証し,平均成功率0.76,平均パス長17.1とした。
論文 参考訳(メタデータ) (2020-09-17T08:23:50Z) - e-TLD: Event-based Framework for Dynamic Object Tracking [23.026432675020683]
本稿では,一般的な追跡条件下での移動イベントカメラを用いた長期オブジェクト追跡フレームワークを提案する。
このフレームワークは、オンライン学習を伴うオブジェクトの識別表現を使用し、ビューのフィールドに戻るとオブジェクトを検出し、追跡する。
論文 参考訳(メタデータ) (2020-09-02T07:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。