論文の概要: Engineering an Efficient Object Tracker for Non-Linear Motion
- arxiv url: http://arxiv.org/abs/2407.00738v1
- Date: Sun, 30 Jun 2024 15:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:47:18.208643
- Title: Engineering an Efficient Object Tracker for Non-Linear Motion
- Title(参考訳): 非線形運動のための高能率物体追従器の工学
- Authors: Momir Adžemović, Predrag Tadić, Andrija Petrović, Mladen Nikolić,
- Abstract要約: マルチオブジェクトトラッキングの目標は、シーン内のすべてのオブジェクトを検出し、追跡することである。
このタスクは、動的および非線形な動きパターンを含むシナリオの場合、特に困難である。
本稿では,これらのシナリオに特化して設計された新しい多目的トラッカーであるDeepMoveSORTを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of multi-object tracking is to detect and track all objects in a scene while maintaining unique identifiers for each, by associating their bounding boxes across video frames. This association relies on matching motion and appearance patterns of detected objects. This task is especially hard in case of scenarios involving dynamic and non-linear motion patterns. In this paper, we introduce DeepMoveSORT, a novel, carefully engineered multi-object tracker designed specifically for such scenarios. In addition to standard methods of appearance-based association, we improve motion-based association by employing deep learnable filters (instead of the most commonly used Kalman filter) and a rich set of newly proposed heuristics. Our improvements to motion-based association methods are severalfold. First, we propose a new transformer-based filter architecture, TransFilter, which uses an object's motion history for both motion prediction and noise filtering. We further enhance the filter's performance by careful handling of its motion history and accounting for camera motion. Second, we propose a set of heuristics that exploit cues from the position, shape, and confidence of detected bounding boxes to improve association performance. Our experimental evaluation demonstrates that DeepMoveSORT outperforms existing trackers in scenarios featuring non-linear motion, surpassing state-of-the-art results on three such datasets. We also perform a thorough ablation study to evaluate the contributions of different tracker components which we proposed. Based on our study, we conclude that using a learnable filter instead of the Kalman filter, along with appearance-based association is key to achieving strong general tracking performance.
- Abstract(参考訳): マルチオブジェクトトラッキングの目標は、ビデオフレーム間のバウンディングボックスを関連付けることで、シーン内のすべてのオブジェクトを検出し、追跡することである。
この関係は、検出された物体の一致した動きと出現パターンに依存している。
このタスクは、動的および非線形な動きパターンを含むシナリオの場合、特に困難である。
本稿では,これらのシナリオに特化して設計された新しい多目的トラッカーであるDeepMoveSORTを紹介する。
外観に基づくアソシエーションの標準的な方法に加えて、深層学習可能なフィルタ(カルマンフィルタの代わりに)と、新たに提案された豊富なヒューリスティックスを用いて、動きに基づくアソシエーションを改善する。
動作に基づくアソシエーション手法の改良は, 複数回行われた。
まず,動作予測と雑音フィルタリングの両方にオブジェクトの動作履歴を利用するトランスフィルタを提案する。
我々は、その動き履歴を注意深く処理し、カメラの動きを考慮し、フィルタの性能をさらに向上する。
第2に,検出されたバウンディングボックスの位置,形状,信頼性からキューを利用するヒューリスティックスを提案する。
実験により,DeepMoveSORTは既存のトラッカーよりも非線形な動きを特徴とするシナリオで優れており,これら3つのデータセットの最先端結果を上回っていることが示された。
また,提案したトラッカーコンポーネントのコントリビューションを評価するために,徹底的なアブレーション調査を行った。
そこで本研究では,Kalmanフィルタの代わりに学習可能なフィルタを用いることで,外見に基づくアソシエーションと組み合わせることで,高い一般追跡性能を実現することが重要であると結論付けた。
関連論文リスト
- Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
様々な動きによって生じる画像のぼかしを除去することは、難しい問題である。
本研究では,動き適応型分離型協調フィルタと呼ばれる実世界のデブロアリングフィルタモデルを提案する。
本手法は,実世界の動きのぼかし除去に有効な解法を提供し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-19T19:44:24Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object
Tracking [3.5693768338940304]
本稿では,追跡検出システムのための2つの革新的なデータ駆動フィルタリング手法を提案する。
最初の方法は、トレーニング可能な運動モデルを持つベイズフィルタを用いて、物体の将来の位置を予測する。
第2の方法は、エンドツーエンドのトレーニング可能なフィルタで、検出エラーの修正を学習することでさらに前進する。
論文 参考訳(メタデータ) (2024-02-15T10:47:44Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
本稿では,スポーツシナリオに対するDeep ExpansionIoU (Deep-EIoU) という,オンラインかつ堅牢な多対象追跡手法を提案する。
従来の手法とは異なり、カルマンフィルタの使用を放棄し、スポーツシナリオにおける拡張IoUの反復的なスケールアップと深い特徴を活用して、ロバストなトラッキングを行う。
提案手法は,SportsMOTデータセットで77.2%,SportsNet-Trackingデータセットで85.4%を達成し,不規則な動き物体の追跡に顕著な効果を示した。
論文 参考訳(メタデータ) (2023-06-22T17:47:08Z) - Interaction-Aware Labeled Multi-Bernoulli Filter [5.255783459833821]
RFSに基づくマルチターゲットフィルタの予測ステップにターゲットインタラクションを組み込む新しい手法を提案する。
この手法は、協調した群れと車両を追跡するための2つの実用的な応用のために開発された。
論文 参考訳(メタデータ) (2022-04-19T04:23:32Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
本稿では,ガウスフィルタにインスパイアされた動的探索領域改良モジュールを用いたエンドツーエンドMOT法を提案する。
提案手法は,最先端の性能を妥当な速度で達成することができる。
論文 参考訳(メタデータ) (2022-03-21T04:14:06Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
本研究では, 運動場から独立物体の動きを復元する幾何学的解析により, モジュラーネットワークを提案する。
2つの連続フレームを入力とし、背景のセグメンテーションマスクと複数の剛体移動オブジェクトを予測し、3次元の剛体変換によってパラメータ化する。
本手法はkittiおよびsintelにおける剛体運動セグメンテーションの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-11T04:20:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。