Many-Body Fluctuation Theorems for Quantum Coherence and Correlation Dynamics
- URL: http://arxiv.org/abs/2507.01602v1
- Date: Wed, 02 Jul 2025 11:10:42 GMT
- Title: Many-Body Fluctuation Theorems for Quantum Coherence and Correlation Dynamics
- Authors: Kun Zhang, Mo-Yang Ni, Hai-Long Shi, Xiao-Hui Wang, Jin Wang,
- Abstract summary: We extend quantum fluctuation theorems to quantum information dynamics and many-body systems.<n>By extending to quasiprobability, we derive quantum fluctuation theorems for many-body coherence and quantum correlations.<n>These findings uncover the statistical structure underlying the nonequilibrium quantum information dynamics.
- Score: 11.651470433850731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluctuation theorems establish exact relations for nonequilibrium dynamics, profoundly advancing the field of stochastic thermodynamics. In this Letter, we extend quantum fluctuation theorems beyond the traditional thermodynamic framework to quantum information dynamics and many-body systems, where both the system and the environment are multipartite without assuming any thermodynamic constraints. Based on the two-point measurement scheme and the classical probability, we establish the fluctuation theorem for the dynamics of many-body classical mutual information. By extending to quasiprobability, we derive quantum fluctuation theorems for many-body coherence and quantum correlations, presenting them in both integral and detailed forms. Our theoretical results are illustrated and verified using three-qubit examples, and feasible experimental verification protocols are proposed. These findings uncover the statistical structure underlying the nonequilibrium quantum information dynamics, providing fundamental insights and new tools for advancing quantum technologies.
Related papers
- Exact noise and dissipation operators for quantum stochastic thermodynamics [0.4123763595394021]
A rigorous formulation of quantum dissipation in conjunction with thermal noise remains a topic of active research.<n>We show that thermal noise at the quantum level manifests as a multidimensional geometric quantization process.<n>Our results advance the understanding of dissipation in quantum systems and provide new insights into nonequilibrium thermodynamics at the quantum scale.
arXiv Detail & Related papers (2025-04-16T10:16:33Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.<n>In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.<n>In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.<n>Our bounds are tighter than previously derived quantum TURs and KURs for single observables.<n>We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Physical consequences of Lindbladian invariance transformations [44.99833362998488]
We show that symmetry transformations can be exploited, on their own, to optimize practical physical tasks.
In particular, we show how they can be used to change the measurable values of physical quantities regarding the exchange of energy and/or information with the environment.
arXiv Detail & Related papers (2024-07-02T18:22:11Z) - Information-theoretic derivation of energy and speed bounds [0.2302001830524133]
We provide a model where the dynamics originates from a condition of informational non-equilibrium.
We derive a notion of energy that captures the main features of energy in quantum theory.
Our results provide an information-theoretic reconstruction of the Mandelstam-Tamm bound on the speed of quantum evolutions.
arXiv Detail & Related papers (2024-03-20T01:02:05Z) - The Stochastic-Quantum Theorem [0.0]
This paper states and proves a new theorem that establishes a precise correspondence between any generalized system and a unitarily evolving quantum system.
The theorem also provides a first-principles explanation for why quantum systems are based on the complex numbers, Hilbert spaces, linear-unitary time evolution, and the Born rule.
arXiv Detail & Related papers (2023-09-03T15:28:07Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Quantum Fluctuation Theorem under Continuous Measurement and Feedback [0.0]
We derive the generalized fluctuation theorem under continuous quantum measurement and feedback.
The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer entropy.
Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems.
arXiv Detail & Related papers (2021-12-17T07:02:34Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.