Toward graviton detection via photon-graviton quantum state conversion
- URL: http://arxiv.org/abs/2507.01609v1
- Date: Wed, 02 Jul 2025 11:23:32 GMT
- Title: Toward graviton detection via photon-graviton quantum state conversion
- Authors: Taiki Ikeda, Youka Kaku, Sugumi Kanno, Jiro Soda,
- Abstract summary: A magnetic field enables the interconversion of photons and gravitons, yet the process is usually analysed only at the level of classical wave equations.<n>We revisit photon-graviton conversion in a quantum field theoretic framework, allowing us to track the evolution of arbitrary quantum states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A magnetic field enables the interconversion of photons and gravitons, yet the process is usually analysed only at the level of classical wave equations. We revisit photon-graviton conversion in a quantum field theoretic framework, allowing us to track the evolution of arbitrary quantum states. Treating the photons as squeezed coherent states and the gravitons as the squeezed vacuum expected for primordial gravitational waves, we derive analytic expressions for the conversion probability and show that it can be significantly enhanced compared to the conventional estimate. We further demonstrate that the conversion both swaps preexisting entanglement and generates genuinely new entanglement between the electromagnetic and gravitational sectors, which is impossible in any classical description. Detecting such nonclassical correlations would constitute compelling evidence for the quantization of gravity and offers a novel pathway toward graviton detection.
Related papers
- Gravitational redshift via quantized linear gravity [44.99833362998488]
We employ linearized quantum gravity to show that gravitational redshift occurs as a purely quantum process.<n>Redshift occurs as predicted by general relativity but arises in flat spacetime in the absence of curvature.<n>Results can help improve our understanding of the quantum nature of gravity in the low energy and low curvature regime.
arXiv Detail & Related papers (2025-04-04T21:44:34Z) - Entanglement and squeezing of gravitational waves [0.0]
We show that the self-interactions present in the effective field theory formulation of general relativity can couple gravitational wave modes and generate nonclassical states.<n>The output of gravitational nonlinear processes can also be sensitive to quantum features of the input states, indicating that nonlinearities can act both as sources and detectors of quantum features of gravitational waves.
arXiv Detail & Related papers (2025-01-28T16:08:45Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.<n>We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.<n>Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Detecting single gravitons with quantum sensing [0.0]
We show that signatures of single graviton exchange can be observed in laboratory experiments.
In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity.
arXiv Detail & Related papers (2023-08-29T17:05:32Z) - Signatures of Quantum Gravity in the Gravitational Self-Interaction of
Photons [0.0]
We propose relativistic tests of quantum gravity using the gravitational self-interaction of photons in a cavity.
We demonstrate that this interaction results in a number of quantum gravitational signatures in the quantum state of the light that cannot be reproduced by any classical theory of gravity.
arXiv Detail & Related papers (2022-10-06T10:29:09Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum signatures in nonlinear gravitational waves [0.0]
We investigate quantum signatures in gravitational waves using tools from quantum optics.
We show that Squeezed-coherent gravitational waves can enhance or suppress the signal measured by an interferometer.
We also show that Gaussian gravitational wave quantum states can be reconstructed from measurements over an ensemble of optical fields interacting with a single copy of the gravitational wave.
arXiv Detail & Related papers (2021-11-02T17:55:53Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.