RobuSTereo: Robust Zero-Shot Stereo Matching under Adverse Weather
- URL: http://arxiv.org/abs/2507.01653v1
- Date: Wed, 02 Jul 2025 12:27:53 GMT
- Title: RobuSTereo: Robust Zero-Shot Stereo Matching under Adverse Weather
- Authors: Yuran Wang, Yingping Liang, Yutao Hu, Ying Fu,
- Abstract summary: Learning-based stereo matching models struggle in adverse weather conditions due to the scarcity of corresponding training data.<n>We propose textbfRobuSTereo, a novel framework that enhances the zero-shot generalization of stereo matching models under adverse weather.
- Score: 9.627322054208868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based stereo matching models struggle in adverse weather conditions due to the scarcity of corresponding training data and the challenges in extracting discriminative features from degraded images. These limitations significantly hinder zero-shot generalization to out-of-distribution weather conditions. In this paper, we propose \textbf{RobuSTereo}, a novel framework that enhances the zero-shot generalization of stereo matching models under adverse weather by addressing both data scarcity and feature extraction challenges. First, we introduce a diffusion-based simulation pipeline with a stereo consistency module, which generates high-quality stereo data tailored for adverse conditions. By training stereo matching models on our synthetic datasets, we reduce the domain gap between clean and degraded images, significantly improving the models' robustness to unseen weather conditions. The stereo consistency module ensures structural alignment across synthesized image pairs, preserving geometric integrity and enhancing depth estimation accuracy. Second, we design a robust feature encoder that combines a specialized ConvNet with a denoising transformer to extract stable and reliable features from degraded images. The ConvNet captures fine-grained local structures, while the denoising transformer refines global representations, effectively mitigating the impact of noise, low visibility, and weather-induced distortions. This enables more accurate disparity estimation even under challenging visual conditions. Extensive experiments demonstrate that \textbf{RobuSTereo} significantly improves the robustness and generalization of stereo matching models across diverse adverse weather scenarios.
Related papers
- TIR-Diffusion: Diffusion-based Thermal Infrared Image Denoising via Latent and Wavelet Domain Optimization [11.970228442183476]
We propose a diffusion-based TIR image denoising framework.<n>Our method fine-tunes the model via a novel loss function combining latent-space and discrete wavelet transform (DWT) / dual-tree complex wavelet transform (DTCWT) losses.<n> Experiments on benchmark datasets demonstrate superior performance of our approach compared to state-of-the-art denoising methods.
arXiv Detail & Related papers (2025-07-30T06:27:32Z) - Pseudo-Label Guided Real-World Image De-weathering: A Learning Framework with Imperfect Supervision [57.5699142476311]
We propose a unified solution for real-world image de-weathering with non-ideal supervision.<n>Our method exhibits significant advantages when trained on imperfectly aligned de-weathering datasets.
arXiv Detail & Related papers (2025-04-14T07:24:03Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.<n>We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)<n>PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.<n>FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - Scalable Benchmarking and Robust Learning for Noise-Free Ego-Motion and 3D Reconstruction from Noisy Video [30.89206445146674]
We aim to redefine robust ego-motion estimation and photorealistic 3D reconstruction by addressing a critical limitation: reliance on noise-free data.<n>We tackle three core challenges: scalable data generation, comprehensive robustness, and model enhancement.<n>We create Robust-Ego3D, a benchmark rigorously designed to expose noise-induced performance degradation.
arXiv Detail & Related papers (2025-01-24T08:25:48Z) - ZeroStereo: Zero-shot Stereo Matching from Single Images [17.560148513475387]
We propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching.<n>Our approach synthesizes high-quality right images by leveraging pseudo disparities generated by a monocular depth estimation model.<n>Our pipeline achieves state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow.
arXiv Detail & Related papers (2025-01-15T08:43:48Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
Single image dehazing is essential for applications such as autonomous driving and surveillance.
We propose an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform.
Our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods.
arXiv Detail & Related papers (2024-10-07T05:36:11Z) - Digging into contrastive learning for robust depth estimation with diffusion models [55.62276027922499]
We propose a novel robust depth estimation method called D4RD.
It features a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments.
In experiments, D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions.
arXiv Detail & Related papers (2024-04-15T14:29:47Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.