論文の概要: Variational Graph Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2507.01699v1
- Date: Wed, 02 Jul 2025 13:28:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.257124
- Title: Variational Graph Convolutional Neural Networks
- Title(参考訳): 変分グラフ畳み込みニューラルネットワーク
- Authors: Illia Oleksiienko, Juho Kanniainen, Alexandros Iosifidis,
- Abstract要約: 不確実性は、グラフ畳み込みネットワークの説明可能性を改善するのに役立つ。
不確実性は、モデルの結果を検証するために重要なアプリケーションでも使用することができる。
- 参考スコア(独自算出の注目度): 72.67088029389764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimation of model uncertainty can help improve the explainability of Graph Convolutional Networks and the accuracy of the models at the same time. Uncertainty can also be used in critical applications to verify the results of the model by an expert or additional models. In this paper, we propose Variational Neural Network versions of spatial and spatio-temporal Graph Convolutional Networks. We estimate uncertainty in both outputs and layer-wise attentions of the models, which has the potential for improving model explainability. We showcase the benefits of these models in the social trading analysis and the skeleton-based human action recognition tasks on the Finnish board membership, NTU-60, NTU-120 and Kinetics datasets, where we show improvement in model accuracy in addition to estimated model uncertainties.
- Abstract(参考訳): モデルの不確実性の推定は、グラフ畳み込みネットワークの説明可能性とモデルの精度を同時に向上させるのに役立つ。
不確実性は、専門家または追加のモデルによってモデルの結果を検証するために、クリティカルなアプリケーションでも使用することができる。
本稿では,空間的および時空間的なグラフ畳み込みネットワークの変分ニューラルネットワークバージョンを提案する。
我々は、モデル説明可能性を改善する可能性を持つモデルの出力と層的注意の両方において不確実性を推定する。
我々は,これらのモデルがフィンランドのボードメンバーシップ,NTU-60,NTU-120,Kineeticsデータセット上で,社会的取引分析および骨格に基づく人体行動認識タスクにおいて有益であることを示す。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
グラフニューラルネットワーク(GNN)は、ネットワークのようなデータから学習する上で優れるが、解釈性に欠けることが多い。
本稿では,GKAN(Graph Kolmogorov-Arnold Network)を提案する。
論文 参考訳(メタデータ) (2024-06-26T13:54:59Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
論文 参考訳(メタデータ) (2024-02-28T22:19:55Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
ニューラルネットワークのキャリブレーションに対する考慮の欠如は、人間から信頼を得ることはないだろう。
我々はNeural Clamping Toolkitを紹介した。これは開発者が最先端のモデルに依存しないキャリブレーションモデルを採用するのを支援するために設計された最初のオープンソースフレームワークである。
論文 参考訳(メタデータ) (2022-11-29T15:03:05Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。