論文の概要: NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration
- arxiv url: http://arxiv.org/abs/2211.16274v1
- Date: Tue, 29 Nov 2022 15:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 15:37:39.987176
- Title: NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration
- Title(参考訳): NCTV:ニューラルネットワークキャリブレーションのためのニューラルネットワーククランプツールキットと可視化
- Authors: Lei Hsiung, Yung-Chen Tang, Pin-Yu Chen, Tsung-Yi Ho
- Abstract要約: ニューラルネットワークのキャリブレーションに対する考慮の欠如は、人間から信頼を得ることはないだろう。
我々はNeural Clamping Toolkitを紹介した。これは開発者が最先端のモデルに依存しないキャリブレーションモデルを採用するのを支援するために設計された最初のオープンソースフレームワークである。
- 参考スコア(独自算出の注目度): 66.22668336495175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of deep learning technology, neural networks have
demonstrated their excellent ability to provide accurate predictions in many
tasks. However, a lack of consideration for neural network calibration will not
gain trust from humans, even for high-accuracy models. In this regard, the gap
between the confidence of the model's predictions and the actual correctness
likelihood must be bridged to derive a well-calibrated model. In this paper, we
introduce the Neural Clamping Toolkit, the first open-source framework designed
to help developers employ state-of-the-art model-agnostic calibrated models.
Furthermore, we provide animations and interactive sections in the
demonstration to familiarize researchers with calibration in neural networks. A
Colab tutorial on utilizing our toolkit is also introduced.
- Abstract(参考訳): ディープラーニング技術の進歩により、ニューラルネットワークは多くのタスクで正確な予測を提供する優れた能力を示した。
しかし、ニューラルネットワークキャリブレーションに対する考慮の欠如は、高精度なモデルであっても、人間から信頼を得ることはない。
この点において、モデルの予測の信頼性と実際の正確性の間のギャップは、よく校正されたモデルを引き出すために橋渡しされなければならない。
本稿では,neural clamping toolkitを紹介する。これは,開発者が最先端のモデル非依存の校正モデルを採用するための,最初のオープンソースフレームワークである。
さらに,ニューラルネットワークのキャリブレーションを研究者に知らしめるために,実演中のアニメーションやインタラクティブなセクションも提供する。
ツールキットの利用に関するColabチュートリアルも紹介されている。
関連論文リスト
- What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness? [0.0]
ニューラルネットワークとカーネルメソッドを接続する最近の理論の進歩によって得られた分析ツールを用いて、トレーニングされたニューラルネットワークの逆例について研究する。
NTKがいかにして、トレーニングフリーのやり方で敵の例を生成できるかを示し、遅延のやり方で、有限幅のニューラルネットを騙すために移行することを実証する。
論文 参考訳(メタデータ) (2022-10-11T16:11:48Z) - Bayesian Neural Network Versus Ex-Post Calibration For Prediction
Uncertainty [0.2343856409260935]
ニューラルネットワークからの確率的予測は、分類中の予測の不確実性の原因となる。
実際には、ほとんどのデータセットは非確率的ニューラルネットワークでトレーニングされています。
キャリブレーションアプローチのもっともらしい代替手段は、予測分布を直接モデル化するベイズニューラルネットワークを使用することである。
論文 参考訳(メタデータ) (2022-09-29T07:22:19Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
我々はニューラルクランプ法と呼ばれる新しい後処理キャリブレーション法を提案する。
実験の結果,Neural Clampingは最先端の処理後のキャリブレーション法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-23T14:18:39Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - On Calibration of Graph Neural Networks for Node Classification [29.738179864433445]
グラフニューラルネットワークは、ノード分類やリンク予測といったタスクのためのエンティティとエッジの埋め込みを学ぶ。
これらのモデルは精度で優れた性能を発揮するが、予測に付随する信頼性スコアは校正されないかもしれない。
本稿では,近隣ノードを考慮に入れたトポロジ対応キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T13:48:10Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Consistent feature selection for neural networks via Adaptive Group
Lasso [3.42658286826597]
ニューラルネットワークの重要な特徴を選択するための適応型グループの使用に関する理論的保証を提案し,確立する。
具体的には,1つの隠蔽層と双曲的タンジェント活性化関数を持つ単一出力フィードフォワードニューラルネットワークに対して,特徴選択法が整合であることを示す。
論文 参考訳(メタデータ) (2020-05-30T18:50:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。