Generative flow-based warm start of the variational quantum eigensolver
- URL: http://arxiv.org/abs/2507.01726v1
- Date: Wed, 02 Jul 2025 14:00:37 GMT
- Title: Generative flow-based warm start of the variational quantum eigensolver
- Authors: Hang Zou, Martin Rahm, Anton Frisk Kockum, Simon Olsson,
- Abstract summary: Flow-VQE is a generative framework leveraging conditional normalizing flows with parameterized quantum circuits.<n>By embedding a generative model into the VQE optimization loop through preference-based training, Flow-VQE enables quantum gradient-free optimization.
- Score: 0.09999629695552192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum-classical algorithms like the variational quantum eigensolver (VQE) show promise for quantum simulations on near-term quantum devices, but are often limited by complex objective functions and expensive optimization procedures. Here, we propose Flow-VQE, a generative framework leveraging conditional normalizing flows with parameterized quantum circuits to efficiently generate high-quality variational parameters. By embedding a generative model into the VQE optimization loop through preference-based training, Flow-VQE enables quantum gradient-free optimization and offers a systematic approach for parameter transfer, accelerating convergence across related problems through warm-started optimization. We compare Flow-VQE to a number of standard benchmarks through numerical simulations on molecular systems, including hydrogen chains, water, ammonia, and benzene. We find that Flow-VQE outperforms baseline optimization algorithms, achieving computational accuracy with fewer circuit evaluations (improvements range from modest to more than two orders of magnitude) and, when used to warm-start the optimization of new systems, accelerates subsequent fine-tuning by up to 50-fold compared with Hartree--Fock initialization. Therefore, we believe Flow-VQE can become a pragmatic and versatile paradigm for leveraging generative modeling to reduce the costs of variational quantum algorithms.
Related papers
- Gate Freezing Method for Gradient-Free Variational Quantum Algorithms in Circuit Optimization [0.0]
Quantum circuits (PQCs) are key components of variational quantum algorithms (VQAs)<n>PQCs enable flexible encoding of quantum information through quantum gates and have been successfully applied across domains such as quantum chemistry, optimization, and quantum machine learning.<n>Despite their potential, PQC performance on NISQ hardware is hindered by noise, decoherence, and the presence of barren plateaus, which can impede gradient-based optimization.
arXiv Detail & Related papers (2025-07-10T13:22:31Z) - Improving Variational Quantum Circuit Optimization via Hybrid Algorithms and Random Axis Initialization [0.0]
Variational quantum circuits (VQCs) are an essential tool in applying noisy intermediate-scale quantum computers to practical problems.<n>We enhance the performance of the Rotosolve method, a gradient-free optimization algorithm specifically designed for VQCs.<n>We construct hybrid algorithms that benefit from the rapid initial convergence of Rotosolve while leveraging the superior expressivity of FQS.
arXiv Detail & Related papers (2025-03-26T17:10:19Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.<n>Momentum-QNG is more effective to escape local minima and plateaus in the variational parameter space.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Benchmarking of Different Optimizers in the Variational Quantum
Algorithms for Applications in Quantum Chemistry [0.0]
Classical yardsticks play a crucial role in determining the accuracy and convergence of variational quantum algorithms.
We consider a few popular yardsticks and assess their performance in variational quantum algorithms for applications in quantum chemistry.
arXiv Detail & Related papers (2022-08-22T13:02:00Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Layer VQE: A Variational Approach for Combinatorial Optimization on
Noisy Quantum Computers [5.644434841659249]
We propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE)
We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches.
Our simulation results show that L-VQE performs well under realistic hardware noise.
arXiv Detail & Related papers (2021-02-10T16:53:22Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.