Layer VQE: A Variational Approach for Combinatorial Optimization on
Noisy Quantum Computers
- URL: http://arxiv.org/abs/2102.05566v3
- Date: Wed, 11 May 2022 13:06:43 GMT
- Title: Layer VQE: A Variational Approach for Combinatorial Optimization on
Noisy Quantum Computers
- Authors: Xiaoyuan Liu, Anthony Angone, Ruslan Shaydulin, Ilya Safro, Yuri
Alexeev, Lukasz Cincio
- Abstract summary: We propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE)
We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches.
Our simulation results show that L-VQE performs well under realistic hardware noise.
- Score: 5.644434841659249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization on near-term quantum devices is a promising path
to demonstrating quantum advantage. However, the capabilities of these devices
are constrained by high noise or error rates. In this paper, we propose an
iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum
Eigensolver (VQE). We present a large-scale numerical study, simulating
circuits with up to 40 qubits and 352 parameters, that demonstrates the
potential of the proposed approach. We evaluate quantum optimization heuristics
on the problem of detecting multiple communities in networks, for which we
introduce a novel qubit-frugal formulation. We numerically compare L-VQE with
Quantum Approximate Optimization Algorithm (QAOA) and demonstrate that QAOA
achieves lower approximation ratios while requiring significantly deeper
circuits. We show that L-VQE is more robust to finite sampling errors and has a
higher chance of finding the solution as compared with standard VQE approaches.
Our simulation results show that L-VQE performs well under realistic hardware
noise.
Related papers
- Light Cone Cancellation for Variational Quantum Eigensolver Ansatz [3.1347083354427707]
Variational Quantum Algorithms (VQAs) represent a class of algorithms that utilize a hybrid approach.
In this study, we apply a method known as Light Cone Cancellation (LCC) to optimize variational circuits.
We show that LCC yields higher approximation ratios than those cases without LCC.
arXiv Detail & Related papers (2024-04-30T12:31:03Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Performance analysis of a filtering variational quantum algorithm [0.0]
Filtering Variational Quantum Eigensolver (F-VQE) is a variational hybrid quantum algorithm designed to solve optimization problems on existing quantum computers.
We employ Instantaneous Quantum Polynomial circuits as our parameterized quantum circuits.
Despite some observed positive signs, we conclude that significant development is necessary for a practical advantage with F-VQE.
arXiv Detail & Related papers (2024-04-13T08:50:44Z) - Variational Quantum Eigensolver with Constraints (VQEC): Solving Constrained Optimization Problems via VQE [0.0]
Variational quantum approaches have shown great promise in finding near-optimal solutions to computationally challenging tasks.
This work proposes a hybrid quantum-classical algorithmic paradigm termed VQEC to handle optimization with constraints.
arXiv Detail & Related papers (2023-11-14T19:49:09Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - On quantum factoring using noisy intermediate scale quantum computers [0.0]
We show better chance of finding the ground state when using VQE rather than QAOA for optimization.
In gradient-based optimization we find that the time required for quantum circuit gradient estimation is a significant problem.
arXiv Detail & Related papers (2022-08-15T09:32:07Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Efficient measure for the expressivity of variational quantum algorithms [72.59790225766777]
We exploit an advanced tool in statistical learning theory, i.e., covering number, to study the expressivity of variational quantum algorithms.
We first exhibit how the expressivity of VQAs with an arbitrary ansatze is upper bounded by the number of quantum gates and the measurement observable.
We then explore the expressivity of VQAs on near-term quantum chips, where the system noise is considered.
arXiv Detail & Related papers (2021-04-20T13:51:08Z) - Improving the variational quantum eigensolver using variational
adiabatic quantum computing [0.0]
variational quantumsampling (VAQC) is a hybrid quantum-classical algorithm for finding a Hamiltonian minimum eigenvalue of a quantum circuit.
We show that VAQC can provide more accurate solutions than "plain" VQE, for the evaluation.
arXiv Detail & Related papers (2021-02-04T20:25:50Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.