論文の概要: HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
- arxiv url: http://arxiv.org/abs/2507.01737v1
- Date: Wed, 02 Jul 2025 14:13:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.280472
- Title: HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
- Title(参考訳): HOI-Dyn:人間の物体運動拡散のための学習インタラクションダイナミクス
- Authors: Lin Wu, Zhixiang Chen, Jianglin Lan,
- Abstract要約: 本稿では、ドライバ対応システムとしてHOI生成を定式化する新しいフレームワークであるHOI-Dynを提案する。
我々の手法の中核は、軽量なトランスフォーマーベースの相互作用力学モデルである。
提案手法は,HOI生成の質を高めるだけでなく,生成した相互作用の質を評価するための有効な指標も確立する。
- 参考スコア(独自算出の注目度): 11.26861317672778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
- Abstract(参考訳): 現実的な3次元人間-物体相互作用(HOI)の生成は、詳細な相互作用のモデリングが困難であるため、依然として困難な課題である。
既存の方法は、人間と物体の運動を個別に扱い、身体的に不明瞭で因果的に一貫性のない行動をもたらす。
本研究では,HoI生成をドライバ対応システムとして定式化する新しいフレームワークであるHOI-Dynについて述べる。
提案手法のコアとなるのは,物体が人間の動きにどう反応するかを明示的に予測する,軽量なトランスフォーマーベースインタラクションダイナミクスモデルである。
整合性をさらに強化するために,動的予測誤差の影響を緩和し,誤った最適化信号を防止する残差に基づく動的損失を導入する。
ダイナミックスモデルは、推論効率を保ちながら、トレーニング時にのみ使用される。
広範に定性的かつ定量的な実験を通じて,本手法はHOI生成の品質を高めるだけでなく,生成した相互作用の質を評価するための有効な指標も確立することを示した。
関連論文リスト
- PhysiInter: Integrating Physical Mapping for High-Fidelity Human Interaction Generation [35.563978243352764]
人間のインタラクション生成パイプライン全体に統合された物理マッピングを導入する。
具体的には、物理に基づくシミュレーション環境での運動模倣は、ターゲットの動きを物理的に有効な空間に投影するために使用される。
実験の結果,人間の運動の質は3%~89%向上した。
論文 参考訳(メタデータ) (2025-06-09T06:04:49Z) - Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
従来の手法は、しばしば問題を低速または2D設定に単純化し、現実の3Dタスクに適用性を制限する。
データ不足を軽減するため、新しいシミュレーションフレームワークと、低次ダイナミクスに基づくベンチマークを導入する。
本研究では,シミュレーション前トレーニングと物理インフォームドテスト時間適応を統合するフレームワークであるDynamics Informed Diffusion Policy (DIDP)を提案する。
論文 参考訳(メタデータ) (2025-05-23T03:28:25Z) - InterDyn: Controllable Interactive Dynamics with Video Diffusion Models [50.38647583839384]
我々は、初期フレームと駆動対象またはアクターの動作を符号化する制御信号が与えられたインタラクティブな動画像を生成するフレームワークであるInterDynを提案する。
我々の重要な洞察は、大規模なビデオ生成モデルは、大規模ビデオデータからインタラクティブなダイナミクスを学習し、ニューラルと暗黙の物理シミュレーターの両方として機能できるということです。
論文 参考訳(メタデータ) (2024-12-16T13:57:02Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
我々は、リレーショナルインターベンション(THOR)を用いたテキスト誘導型ヒューマンオブジェクト相互作用拡散モデルを提案する。
各拡散段階において、テキスト誘導された人間と物体の動きを開始し、その後、人と物体の関係を利用して物体の動きに介入する。
テキスト記述をシームレスに統合するText2HOIデータセットであるText-BEHAVEを,現在最大規模で公開されている3D HOIデータセットに構築する。
論文 参考訳(メタデータ) (2024-03-17T13:17:25Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
本稿では,3次元物体相互作用(HOI)の予測に向けた新しい課題について述べる。
我々のタスクは、様々な形状の動的物体をモデリングし、全身の動きを捉え、物理的に有効な相互作用を確実にする必要があるため、はるかに困難である。
複数の人-物間相互作用データセットを用いた実験は,本手法の有効性を実証し,現実的で,鮮明で,かつ,極めて長期にわたる3D HOI予測を生成できることを示した。
論文 参考訳(メタデータ) (2023-08-31T17:59:08Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
人間は高度に適応可能で、異なるタスク、状況、状況を扱うために異なるモードを素早く切り替える。
人間と物体の相互作用(HOI)において、これらのモードは、(1)活動全体に対する大規模な一貫した計画、(2)タイムラインに沿って開始・終了する小規模の子どもの対話的行動の2つのメカニズムに起因していると考えられる。
本研究は、人間の動作を協調的に制御する2つの同時メカニズムをモデル化することを提案する。
論文 参考訳(メタデータ) (2023-07-24T12:21:33Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
逆強化学習問題として交通シミュレーションを定式化する。
動的ロバストシミュレーション学習のためのパラメータ共有逆強化学習モデルを提案する。
提案モデルでは,実世界の車両の軌道を模倣し,同時に報酬関数を復元することができる。
論文 参考訳(メタデータ) (2021-05-20T07:26:34Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - Weakly-supervised Learning of Human Dynamics [26.168147530506953]
本研究では,人間の動作から動的推定を行うための弱教師付き学習フレームワークを提案する。
本手法は,エンド・ツー・エンドトレーニングにおいて,前・逆ダイナミックスのための新しいニューラルネットワーク層を含む。
提案手法は, 接地反応力, 接地反応モーメント, 関節トルクのレグレッションの観点から, 最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-07-17T13:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。