論文の概要: Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions
- arxiv url: http://arxiv.org/abs/2012.01027v1
- Date: Wed, 2 Dec 2020 08:43:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:49:51.118759
- Title: Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions
- Title(参考訳): 積極的人間-ロボットインタラクションのための軌道最適化におけるニューラルネットワーク勾配の活用
- Authors: Simon Schaefer, Karen Leung, Boris Ivanovic, Marco Pavone
- Abstract要約: 本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 32.57882479132015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To achieve seamless human-robot interactions, robots need to intimately
reason about complex interaction dynamics and future human behaviors within
their motion planning process. However, there is a disconnect between
state-of-the-art neural network-based human behavior models and robot motion
planners -- either the behavior models are limited in their consideration of
downstream planning or a simplified behavior model is used to ensure
tractability of the planning problem. In this work, we present a framework that
fuses together the interpretability and flexibility of trajectory optimization
(TO) with the predictive power of state-of-the-art human trajectory prediction
models. In particular, we leverage gradient information from data-driven
prediction models to explicitly reason about human-robot interaction dynamics
within a gradient-based TO problem. We demonstrate the efficacy of our approach
in a multi-agent scenario whereby a robot is required to safely and efficiently
navigate through a crowd of up to ten pedestrians. We compare against a variety
of planning methods, and show that by explicitly accounting for interaction
dynamics within the planner, our method offers safer and more efficient
behaviors, even yielding proactive and nuanced behaviors such as waiting for a
pedestrian to pass before moving.
- Abstract(参考訳): シームレスな人間とロボットの相互作用を実現するには、ロボットは複雑な相互作用のダイナミクスと、動作計画プロセスにおける将来の人間の行動について、綿密に推論する必要がある。
しかし、最先端のニューラルネットワークベースの人間行動モデルとロボットの動作プランナとの間には断絶がある。下流の計画を考慮して行動モデルに制限があるか、計画問題のトラクタビリティを確保するために単純化された行動モデルが使用される。
本稿では,軌道最適化(to)の解釈可能性と柔軟性と,最先端の軌道予測モデルの予測能力とを融合する枠組みを提案する。
特に、データ駆動予測モデルからの勾配情報を利用して、勾配に基づくTO問題における人間-ロボット相互作用のダイナミクスを明確に推論する。
ロボットが最大10人の歩行者の群集を安全に効率的に移動する必要があるマルチエージェントシナリオにおいて,本手法の有効性を実証する。
我々は,様々な計画手法と比較し,プランナー内のインタラクションダイナミクスを明示的に計算することにより,より安全かつ効率的な行動を提供し,移動前に歩行者が通過するのを待つような積極的かつニュアンス的な行動も得ることを示した。
関連論文リスト
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
提案手法は,軌道予測器が将来の状態を生成するために使用する関係の進化を捉えるために,動的に進化する関係グラフとハイパーグラフを推論する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
人間は高度に適応可能で、異なるタスク、状況、状況を扱うために異なるモードを素早く切り替える。
人間と物体の相互作用(HOI)において、これらのモードは、(1)活動全体に対する大規模な一貫した計画、(2)タイムラインに沿って開始・終了する小規模の子どもの対話的行動の2つのメカニズムに起因していると考えられる。
本研究は、人間の動作を協調的に制御する2つの同時メカニズムをモデル化することを提案する。
論文 参考訳(メタデータ) (2023-07-24T12:21:33Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
暗黙的な二重制御パラダイムに基づくループ内動作計画のための不確実性学習を実現するアルゴリズムを提案する。
提案手法は,動的プログラミングモデル予測制御問題のサンプリングに基づく近似に依拠する。
結果として得られたポリシーは、連続的およびカテゴリー的不確実性を持つ一般的な人間の予測モデルに対する二重制御効果を維持することが示されている。
論文 参考訳(メタデータ) (2022-02-15T20:40:06Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
本稿では,人間の動作予測のための確率モデルを提案する。
我々のモデルは、観測された動きシーケンスが与えられたときに、いくつかの将来の動きを生成することができる。
我々は、大規模ベンチマークデータセットHuman3.6mに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2021-07-14T09:05:33Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
本稿では、リカレントニューラルネットワーク(RNN)に基づく新しい軌道予測モデルを提案する。
次に,軌道予測モデルをマルチロボット衝突回避のための分散モデル予測制御(MPC)フレームワークに組み込む。
論文 参考訳(メタデータ) (2021-02-10T11:11:08Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
本稿では,自動運転車の協調認識,予測,動作計画を行うエンド・ツー・エンドの学習可能なネットワークを提案する。
私たちのネットワークは、人間のデモからエンドツーエンドに学習されます。
論文 参考訳(メタデータ) (2020-08-13T14:40:46Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
本研究では,人間の行動予測に対する条件付き変分オートエンコーダアプローチに関する自己完結型チュートリアルを提供する。
本チュートリアルの目的は,人間の行動予測における最先端の手法の分類をレビューし,構築することである。
論文 参考訳(メタデータ) (2020-08-10T03:18:27Z) - Path Planning in Dynamic Environments using Generative RNNs and Monte
Carlo Tree Search [11.412720572948086]
群衆や交通などの動的環境におけるロボット経路計画のための最先端の手法は、エージェントのための手作りのモーションモデルに依存している。
本稿では,モンテカルロ木探索(MCTS)における生成的リカレントニューラルネットワークを用いた統合経路計画フレームワークを提案する。
提案手法は,対話時の動作予測精度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2020-01-30T22:46:37Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。