String Breaking Dynamics and Glueball Formation in a $2+1$D Lattice Gauge Theory
- URL: http://arxiv.org/abs/2507.01950v1
- Date: Wed, 02 Jul 2025 17:57:52 GMT
- Title: String Breaking Dynamics and Glueball Formation in a $2+1$D Lattice Gauge Theory
- Authors: Kaidi Xu, Umberto Borla, Sergej Moroz, Jad C. Halimeh,
- Abstract summary: We study the far-from-equilibrium quench dynamics of electric flux strings between two static charges.<n>Our findings can be probed on state-of-the-art superconducting chromo-qubit and trapped-ion quantum processors.
- Score: 10.282654928899522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of advanced quantum processors capable of probing lattice gauge theories (LGTs) in higher spatial dimensions, it is crucial to understand string dynamics in such models to guide upcoming experiments and to make connections to high-energy physics (HEP). Using tensor network methods, we study the far-from-equilibrium quench dynamics of electric flux strings between two static charges in the $2+1$D $\mathbb{Z}_2$ LGT with dynamical matter. We calculate the probabilities of finding the time-evolved wave function in string configurations of the same length as the initial string. At resonances determined by the the electric field strength and the mass, we identify various string breaking processes accompanied with matter creation. Away from resonance strings exhibit intriguing confined dynamics which, for strong electric fields, we fully characterize through effective perturbative models. Starting in maximal-length strings, we find that the wave function enters a dynamical regime where it splits into shorter strings and disconnected loops, with the latter bearing qualitative resemblance to glueballs in quantum chromodynamics (QCD). Our findings can be probed on state-of-the-art superconducting-qubit and trapped-ion quantum processors.
Related papers
- Real-Time Dynamics in a (2+1)-D Gauge Theory: The Stringy Nature on a Superconducting Quantum Simulator [32.73124984242397]
We probe string modes of motion with dynamical matter in a digital quantum simulation of a (2+1) dimensional gauge theory.<n>We employ extensive tensor network simulations using the basis update and Galerkin method to predict large-scale real-time dynamics.<n>This work establishes a milestone for probing non-perturbative gauge dynamics via superconducting quantum simulation.
arXiv Detail & Related papers (2025-07-10T18:01:27Z) - Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - String breaking dynamics in Ising chain with local vibrations [0.0]
We consider the dynamics in the one-dimensional quantum Ising model in which each spin coherently interacts with its phononic mode.<n>For weak coupling, the string breaking is slowed down as compared to the dynamics in an isolated Ising string.<n>The strong coupling leads to complicated dynamics in which the domain wall character of excitation is dissolved among many coupled states.
arXiv Detail & Related papers (2024-12-31T19:00:06Z) - Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Observation of string-breaking dynamics in a quantum simulator [30.432877421232842]
String-breaking dynamics play vital role in high-energy particle collisions and early universe evolution.
Quantum simulators are expected to outperform classical computing methods.
We experimentally demonstrate for the first time, for the first time, the required experimental capabilities to simulate string-breaking dynamics.
arXiv Detail & Related papers (2024-10-17T17:46:07Z) - Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena.<n>Here, we investigate the dynamics of local excitations in a $mathZ$ LGT using a two-dimensional lattice of superconducting qubits.<n>Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.