論文の概要: News Sentiment Embeddings for Stock Price Forecasting
- arxiv url: http://arxiv.org/abs/2507.01970v1
- Date: Thu, 19 Jun 2025 17:30:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.443603
- Title: News Sentiment Embeddings for Stock Price Forecasting
- Title(参考訳): 株価予測のためのニュースセンチメント埋め込み
- Authors: Ayaan Qayyum,
- Abstract要約: 主な焦点は、ウォール・ストリート・ジャーナルのニュースの見出しを使って、毎日の時間スケールで株価の動きを予測することだ。
予備的な結果は、トレーニングや機械学習システムの最適化と比較して、ヘッドラインデータの埋め込みは、少なくとも40%の株価予測に大きく貢献することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper will discuss how headline data can be used to predict stock prices. The stock price in question is the SPDR S&P 500 ETF Trust, also known as SPY that tracks the performance of the largest 500 publicly traded corporations in the United States. A key focus is to use news headlines from the Wall Street Journal (WSJ) to predict the movement of stock prices on a daily timescale with OpenAI-based text embedding models used to create vector encodings of each headline with principal component analysis (PCA) to exact the key features. The challenge of this work is to capture the time-dependent and time-independent, nuanced impacts of news on stock prices while handling potential lag effects and market noise. Financial and economic data were collected to improve model performance; such sources include the U.S. Dollar Index (DXY) and Treasury Interest Yields. Over 390 machine-learning inference models were trained. The preliminary results show that headline data embeddings greatly benefit stock price prediction by at least 40% compared to training and optimizing a machine learning system without headline data embeddings.
- Abstract(参考訳): 本稿では、株価の予測に見出しデータを用いる方法について論じる。
問題の株価はSPDR S&P 500 ETF Trust(SPYとしても知られる)で、米国最大の上場企業500社のパフォーマンスを追跡する。
主要な焦点は、ウォールストリートジャーナル(WSJ)のニュースの見出しを使って、主要なコンポーネント分析(PCA)で各見出しのベクターエンコーディングを作成するために使われるOpenAIベースのテキスト埋め込みモデルを用いて、毎日の時間スケールで株価の動きを予測することである。
この研究の課題は、時間に依存しない、時間に依存しない、ニュースが株価に与える影響を捉えながら、潜在的なラグ効果や市場の騒音に対処することである。
米国ドル指数(DXY)や財務金利利回りなど、金融と経済のデータはモデルのパフォーマンスを改善するために収集された。
390以上の機械学習推論モデルが訓練された。
予備的な結果から,ヘッドラインデータ埋め込みは,ヘッドラインデータ埋め込みを伴わない機械学習システムのトレーニングや最適化と比較して,少なくとも40%の株価予測に大きく貢献することが示された。
関連論文リスト
- Multimodal Stock Price Prediction [0.0]
さまざまなデータソースと機械学習を慎重に統合して、正確な株価予測を行うことがますます重要になっている。
本稿では,従来の財務指標,つぶやき,ニュース記事など,さまざまな情報源のデータを組み合わせて,株価予測のためのマルチモーダル機械学習手法を提案する。
論文 参考訳(メタデータ) (2025-01-23T16:38:46Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation [0.0]
本稿では,ゲートリカレントユニット(GRU)と自己認識機構に基づいて,SPY(ETF)オプションの価格を予測する機械学習手法を提案する。
我々は、多層パーセプトロン(MLP)、長期記憶(LSTM)、自己注意型LSTM、自己注意型GRUの4つの異なる機械学習モデルを構築した。
論文 参考訳(メタデータ) (2023-10-19T06:05:46Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Effects of Daily News Sentiment on Stock Price Forecasting [0.5242869847419834]
本稿では,約3.7年周期でニュースデータベースを作成するための,堅牢なデータ収集と事前処理フレームワークを提案する。
このタイムラインの株価情報をキャプチャして、記事のさまざまなセクションの感情スコアを含む複数の時系列データを作成します。
これに基づいて、評価スコアを特徴として使用し、性能を比較することなく、株価を予測するためにいくつかのLSTMモデルを適合させます。
論文 参考訳(メタデータ) (2023-08-02T06:42:39Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - S&P 500 Stock Price Prediction Using Technical, Fundamental and Text
Data [5.420890357732937]
株価予測に使用される一般的な予測モデルと新しい予測モデルの両方をまとめた。
S&Pの株価を予測するために、技術的な指標、基本的な特徴、テキストベースの感情データと組み合わせました。
S&P 500指数の方向予測における66.18%の精度と、個人株の方向予測における62.09%の精度が達成された。
論文 参考訳(メタデータ) (2021-08-24T16:18:52Z) - Graph-Based Learning for Stock Movement Prediction with Textual and
Relational Data [0.0]
ストックフォアキャスティングのためのマルチグラフリカレントネットワーク(MGRN)という新しいストックムーブメント予測フレームワークを提案する。
このアーキテクチャは、財務ニュースからのテキストの感情と、他の財務データから抽出された複数の関係情報を組み合わせることができる。
精度テストとSTOXX Europe 600指数の株価のトレーディングシミュレーションを通じて、我々のモデルが他のベンチマークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-07-22T21:57:18Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
2つの最先端ディープラーニングモデルを用いて,ストックデータセットに適用したいくつかの拡張手法を評価する。
比較的小さなデータセット拡張手法では、リスク調整された戻り値のパフォーマンスが最大400%向上する。
より大きなストックデータセット拡張メソッドでは、最大40%の改善が達成される。
論文 参考訳(メタデータ) (2020-10-28T17:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。