論文の概要: DeepSupp: Attention-Driven Correlation Pattern Analysis for Dynamic Time Series Support and Resistance Levels Identification
- arxiv url: http://arxiv.org/abs/2507.01971v1
- Date: Sun, 22 Jun 2025 11:09:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.445351
- Title: DeepSupp: Attention-Driven Correlation Pattern Analysis for Dynamic Time Series Support and Resistance Levels Identification
- Title(参考訳): DeepSupp: 動的時系列サポートと抵抗レベル同定のための注意駆動相関パターン解析
- Authors: Boris Kriuk, Logic Ng, Zarif Al Hossain,
- Abstract要約: サポートと抵抗(SR)レベルは技術分析の中心であり、トレーダーの入国、出口、リスク管理を導く。
近年の研究では、以下の課題に対処する機械学習技術が導入されている。
DeepSuppは、金融サポートレベルを検出するための新しいディープラーニングアプローチである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Support and resistance (SR) levels are central to technical analysis, guiding traders in entry, exit, and risk management. Despite widespread use, traditional SR identification methods often fail to adapt to the complexities of modern, volatile markets. Recent research has introduced machine learning techniques to address the following challenges, yet most focus on price prediction rather than structural level identification. This paper presents DeepSupp, a new deep learning approach for detecting financial support levels using multi-head attention mechanisms to analyze spatial correlations and market microstructure relationships. DeepSupp integrates advanced feature engineering, constructing dynamic correlation matrices that capture evolving market relationships, and employs an attention-based autoencoder for robust representation learning. The final support levels are extracted through unsupervised clustering, leveraging DBSCAN to identify significant price thresholds. Comprehensive evaluations on S&P 500 tickers demonstrate that DeepSupp outperforms six baseline methods, achieving state-of-the-art performance across six financial metrics, including essential support accuracy and market regime sensitivity. With consistent results across diverse market conditions, DeepSupp addresses critical gaps in SR level detection, offering a scalable and reliable solution for modern financial analysis. Our approach highlights the potential of attention-based architectures to uncover nuanced market patterns and improve technical trading strategies.
- Abstract(参考訳): サポートと抵抗(SR)レベルは技術分析の中心であり、トレーダーの入国、出口、リスク管理を導く。
広く使われているにもかかわらず、伝統的なSR識別法は現代の不安定な市場の複雑さに適応できないことが多い。
最近の研究では、以下の課題に対処するために機械学習技術を導入しているが、そのほとんどは構造レベルの識別よりも価格予測に焦点が当てられている。
本稿では,マルチヘッドアテンション機構を用いた新たなディープラーニング手法DeepSuppを提案し,空間的相関と市場マイクロ構造の関係を解析する。
DeepSuppは高度な機能エンジニアリングを統合し、市場関係の進化を捉えた動的相関行列を構築し、ロバストな表現学習のためにアテンションベースのオートエンコーダを使用する。
最終的なサポートレベルは、教師なしクラスタリングによって抽出され、DBSCANを利用して重要な価格閾値を識別する。
S&P 500ティッカーに関する総合的な評価は、DeepSuppが6つのベースラインメソッドを上回り、重要なサポート精度や市場体制の感度を含む6つの財務指標で最先端のパフォーマンスを達成することを示した。
DeepSuppは、さまざまな市場条件にまたがる一貫性のある結果により、SRレベルの検出において重要なギャップに対処し、現代的な財務分析のためのスケーラブルで信頼性の高いソリューションを提供する。
当社のアプローチは、市場パターンを解明し、技術的トレーディング戦略を改善するために、注目に基づくアーキテクチャの可能性を強調します。
関連論文リスト
- Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges [47.14342587731284]
本調査では,大規模言語モデル(LLM)アライメントにおけるアライメント手法,トレーニングプロトコル,経験的発見について概観する。
我々は多種多様なパラダイムをまたいだアライメント手法の開発を分析し、コアアライメント目標間の基本的なトレードオフを特徴づける。
我々は、直接選好最適化(DPO)、構成AI、脳インスパイアされた方法、アライメント不確実性定量化(AUQ)など、最先端技術について議論する。
論文 参考訳(メタデータ) (2025-07-25T20:52:58Z) - A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books [0.0]
本研究は,暗号通貨制限順序書(LOB)における実時間異常識別のための頑健な統計手法と高度な機械学習手法の比較分析を行う。
我々は13の多様なモデルの有効性を評価し、どのアプローチが潜在的にマニピュティブな取引行動を検出するのに最も適しているかを同定する。
主要な取引所から26,204レコードのデータセットをバックテストして実施した経験的評価は、最高性能のモデルであるEmpirical Covariance (EC)が6.70%向上し、標準のBuy-and-Holdベンチマークを大幅に上回ったことを示している。
論文 参考訳(メタデータ) (2025-07-20T13:42:36Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation [45.29098416799838]
大きな言語モデル(LLM)は、約束を提供するが、このアプリケーションには未検討のままである。
我々はFin-Force-FINancial Forward Counterfactual Evaluationという新しいベンチマークを導入する。
これにより、将来の市場展開を探索し、予測するためのスケーラブルで自動化されたソリューションの道を開くことができる。
論文 参考訳(メタデータ) (2025-05-26T02:41:50Z) - Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information [12.032301674764552]
我々は,高次元,非定常,低信号の市場情報から生じる課題に対処するために,ディープラーニング技術を活用したポートフォリオアロケーションフレームワークを開発した。
我々は、生成的オートエンコーダとオンラインメタラーニングを統合し、市場情報を動的に埋め込む強化学習フレームワークを設計する。
米国株上位500銘柄に基づく実証分析は、当社のフレームワークが共通のポートフォリオベンチマークを上回っていることを示している。
論文 参考訳(メタデータ) (2025-01-29T20:56:59Z) - FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
本稿では、エクイティリサーチに特化したAIエージェントフレームワークであるFinRobotについて述べる。
FinRobotはマルチエージェント・チェーン・オブ・シント(CoT)システムを採用し、定量分析と定性的分析を統合し、人間のアナリストの包括的な推論をエミュレートする。
CapitalCubeやWright Reportsのような既存の自動研究ツールとは異なり、FinRobotは大手ブローカー会社や基礎研究ベンダーと同等の洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T17:38:07Z) - Automate Strategy Finding with LLM in Quant Investment [15.475504003134787]
本稿では,大規模言語モデル(LLM)をリスク認識型マルチエージェントシステム内で活用し,定量的ファイナンスにおける戦略発見を自動化する新しい3段階フレームワークを提案する。
本手法は,金融分野における従来のディープラーニングモデルの脆さに対処するものである。
実験結果は、確立されたベンチマークと比較して、中国とアメリカの市場体制における戦略の堅牢な性能を示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
ワイコフフェイズ(Wyckoff Phases)は、リチャード・D・ワイコフが20世紀初頭に考案したフレームワークである。
本研究は、取引範囲と二次試験の段階を探求し、市場ダイナミクスを理解することの重要性を解明する。
この研究は、これらの相の複雑さを解き明かすことで、市場構造を通して流動性を生み出すことに光を当てている。
この研究は、金融分析とトレーディング戦略におけるAI駆動アプローチの変革の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-23T12:59:49Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
本稿では,ストックダイナミクスを予測するLong Short-Term Memory(LSTM)ネットワークの可能性について検討する。
この研究は、複雑なパターンをキャプチャするLSTMの能力を高めるために、複数の特徴を取り入れている。
LSTMには25日間のタイムステップで重要な価格とボリューム特性が組み込まれている。
論文 参考訳(メタデータ) (2023-12-09T07:53:25Z) - Enhancing Smart Contract Security Analysis with Execution Property Graphs [48.31617821205042]
ランタイム仮想マシン用に特別に設計された動的解析フレームワークであるClueを紹介する。
Clueは契約実行中に重要な情報をキャプチャし、新しいグラフベースの表現であるExecution Property Graphを使用する。
評価結果から, クリューの真正率, 偽正率の低い優れた性能が, 最先端のツールよりも優れていた。
論文 参考訳(メタデータ) (2023-05-23T13:16:42Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
逆機械学習の観点から,アルゴリズム取引のバリュエーションモデルについて検討する。
攻撃コストを最小限に抑えるサイズ制約で、このドメインに特有の新たな攻撃を導入する。
本稿では、金融モデルのロバスト性について研究・評価するための分析ツールとして、これらの攻撃がどのように利用できるかについて論じる。
論文 参考訳(メタデータ) (2020-02-21T22:04:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。