Towards a Playground to Democratize Experimentation and Benchmarking of AI Agents for Network Troubleshooting
- URL: http://arxiv.org/abs/2507.01997v2
- Date: Fri, 04 Jul 2025 07:39:58 GMT
- Title: Towards a Playground to Democratize Experimentation and Benchmarking of AI Agents for Network Troubleshooting
- Authors: Zhihao Wang, Alessandro Cornacchia, Franco Galante, Carlo Centofanti, Alessio Sacco, Dingde Jiang,
- Abstract summary: We focus on the application of AI agents to network troubleshooting.<n>We elaborate on the need for a standardized, reproducible, and open benchmarking platform.
- Score: 48.131257144711576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has demonstrated the effectiveness of Artificial Intelligence (AI), and more specifically, Large Language Models (LLMs), in supporting network configuration synthesis and automating network diagnosis tasks, among others. In this preliminary work, we restrict our focus to the application of AI agents to network troubleshooting and elaborate on the need for a standardized, reproducible, and open benchmarking platform, where to build and evaluate AI agents with low operational effort.
Related papers
- INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
In-network AI is a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) on network infrastructure.<n>This paper provides a comprehensive analysis of optimizing in-network computation for AI.<n>It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities.
arXiv Detail & Related papers (2025-05-30T06:47:55Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.<n>We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach [0.0]
Existing network paradigms have achieved lower downtime as well as a higher Quality of Experience (QoE) through the use of Artificial Intelligence (AI)-based network management tools.<n>These AI management tools, allow for automatic responses to changes in network conditions, lowering operation costs for operators, and improving overall performance.<n>While adopting AI-based management tools enhance the overall network performance, it also introduce challenges such as removing human supervision, privacy violations, algorithmic bias, and model inaccuracies.
arXiv Detail & Related papers (2025-02-08T15:30:25Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.<n>Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.<n>We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
arXiv Detail & Related papers (2025-01-12T04:17:39Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - VHetNets for AI and AI for VHetNets: An Anomaly Detection Case Study for
Ubiquitous IoT [22.990128106182713]
Vertical heterogenous networks (VHetNets) and artificial intelligence (AI) play critical roles in 6G and beyond networks.
This article presents an AI-native VHetNets architecture to enable the synergy of VHetNets and AI.
arXiv Detail & Related papers (2022-10-14T21:55:57Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
We introduce Watch-And-Help (WAH), a challenge for testing social intelligence in AI agents.
In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently.
We build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines.
arXiv Detail & Related papers (2020-10-19T21:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.