VHetNets for AI and AI for VHetNets: An Anomaly Detection Case Study for
Ubiquitous IoT
- URL: http://arxiv.org/abs/2210.08132v1
- Date: Fri, 14 Oct 2022 21:55:57 GMT
- Title: VHetNets for AI and AI for VHetNets: An Anomaly Detection Case Study for
Ubiquitous IoT
- Authors: Weili Wang, Omid Abbasi, Halim Yanikomeroglu, Chengchao Liang, Lun
Tang, and Qianbin Chen
- Abstract summary: Vertical heterogenous networks (VHetNets) and artificial intelligence (AI) play critical roles in 6G and beyond networks.
This article presents an AI-native VHetNets architecture to enable the synergy of VHetNets and AI.
- Score: 22.990128106182713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical heterogenous networks (VHetNets) and artificial intelligence (AI)
play critical roles in 6G and beyond networks. This article presents an
AI-native VHetNets architecture to enable the synergy of VHetNets and AI,
thereby supporting varieties of AI services while facilitating automatic and
intelligent network management. Anomaly detection in Internet of Things (IoT)
is a major AI service required by many fields, including intrusion detection,
state monitoring, device-activity analysis, security supervision and so on.
Conventional anomaly detection technologies mainly consider the anomaly
detection as a standalone service that is independent of any other network
management functionalities, which cannot be used directly in ubiquitous IoT due
to the resource constrained end nodes and decentralized data distribution. In
this article, we develop an AI-native VHetNets-enabled framework to provide the
anomaly detection service for ubiquitous IoT, whose implementation is assisted
by intelligent network management functionalities. We first discuss the
possibilities of VHetNets used for distributed AI model training to provide
anomaly detection service for ubiquitous IoT, i.e., VHetNets for AI. After
that, we study the application of AI approaches in helping provide automatic
and intelligent network management functionalities for VHetNets, i.e., AI for
VHetNets, whose aim is to facilitate the efficient implementation of anomaly
detection service. Finally, a case study is presented to demonstrate the
efficiency and effectiveness of the proposed AI-native VHetNets-enabled anomaly
detection framework.
Related papers
- Towards a Playground to Democratize Experimentation and Benchmarking of AI Agents for Network Troubleshooting [48.131257144711576]
We focus on the application of AI agents to network troubleshooting.<n>We elaborate on the need for a standardized, reproducible, and open benchmarking platform.
arXiv Detail & Related papers (2025-07-01T08:46:37Z) - INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
In-network AI is a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) on network infrastructure.<n>This paper provides a comprehensive analysis of optimizing in-network computation for AI.<n>It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities.
arXiv Detail & Related papers (2025-05-30T06:47:55Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.
We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - Closing the Responsibility Gap in AI-based Network Management: An Intelligent Audit System Approach [0.0]
Existing network paradigms have achieved lower downtime as well as a higher Quality of Experience (QoE) through the use of Artificial Intelligence (AI)-based network management tools.
These AI management tools, allow for automatic responses to changes in network conditions, lowering operation costs for operators, and improving overall performance.
While adopting AI-based management tools enhance the overall network performance, it also introduce challenges such as removing human supervision, privacy violations, algorithmic bias, and model inaccuracies.
arXiv Detail & Related papers (2025-02-08T15:30:25Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.
We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.
The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators.
This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI.
Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities.
arXiv Detail & Related papers (2024-03-14T07:40:32Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Collaborative adversary nodes learning on the logs of IoT devices in an
IoT network [0.0]
We propose an improved approach for IoT security from data perspective.
The Adversary Learning (AdLIoTLog) model is proposed using Recurrent Neural Network (RNN)
Our results show that the predicting performance of the AdLIoTLog model trained by our method degrades by 3-4% in the presence of attack.
arXiv Detail & Related papers (2021-12-22T02:56:22Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
Artificial intelligence (AI) assisted unmanned aerial vehicle (UAV) aided next-generation networking is proposed for dynamic environments.
In the AI-enabled UAV-aided wireless networks (UAWN), multiple UAVs are employed as aerial base stations, which are capable of rapidly adapting to the dynamic environment.
As a benefit of the AI framework, several challenges of conventional UAWN may be circumvented, leading to enhanced network performance, improved reliability and agile adaptivity.
arXiv Detail & Related papers (2020-01-28T15:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.