Noise-enhanced quantum clocks and global field sensors
- URL: http://arxiv.org/abs/2507.02071v1
- Date: Wed, 02 Jul 2025 18:14:38 GMT
- Title: Noise-enhanced quantum clocks and global field sensors
- Authors: Luis Pedro GarcĂa-Pintos,
- Abstract summary: I show that incoherent dynamics can lead to metrological advantages in quantum sensing.<n>I characterize regimes in which the estimation of a time interval or a frequency is enhanced by noise.<n>I illustrate with protocols that display improved sensing of time intervals or global fields by qubit and photonic sensor networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I show that incoherent dynamics can lead to metrological advantages in quantum sensing. The results rely on the fact that incoherent dynamics lead to an additive contribution to the quantum Fisher information about time. Such an additive contribution can lead to a decrease in the error of optimal estimation protocols, as implied by the quantum Cram\'er-Rao bound. I characterize regimes in which the estimation of a time interval or a frequency is enhanced by noise, thus identifying cases where incoherent dynamics serve as a metrological resource. I illustrate with protocols that display improved sensing of time intervals or global fields by qubit and photonic sensor networks.
Related papers
- Signatures of quantum chaos and complexity in the Ising model on random graphs [0.0]
We investigate quantum chaos and complexity in the quantum annealing Ising model on random ErdHos-R'enyi graphs.<n>We study deep thermalization of a quantum state ensemble as an indicator of chaotic dynamics.<n>We also investigate a quantum analogue of the Mpemba effect, where initially "hotter" states can thermalize anomalously fast.
arXiv Detail & Related papers (2025-08-04T18:43:43Z) - Anticipating Decoherence: a Predictive Framework for Enhancing Coherence in Quantum Emitters [96.41185946460115]
We develop an anticipatory framework for forecasting and decoherence engineering in remote quantum emitters.<n>We show that a machine learning model trained on limited data can accurately forecast unseen spectral behavior.<n>These results pave the way for real-time decoherence engineering in scalable quantum systems.
arXiv Detail & Related papers (2025-08-04T17:23:14Z) - Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Enhanced quantum frequency estimation by nonlinear scrambling [41.94295877935867]
We show that dynamically encoding an unknown frequency in a nonlinear quantum electromagnetic field can significantly improve frequency estimation.<n>We quantify this effect using the Wigner-Yanase skew information, which measures the degree of noncommutativity in the Hamiltonian structure.
arXiv Detail & Related papers (2025-03-03T19:00:01Z) - Correlated Noise Estimation with Quantum Sensor Networks [18.51122677780099]
We develop a theoretical framework to determine the limits of correlated (weak) noise estimation with quantum sensor networks.<n>We identify a sensing protocol, reminiscent of a many-body echo sequence, that achieves the fundamental limits of measurement sensitivity for a broad class of problems.
arXiv Detail & Related papers (2024-12-23T19:00:06Z) - Exponential entanglement advantage in sensing correlated noise [16.70008024600165]
We propose a new form of exponential quantum advantage in the context of sensing correlated noise.
We show that entanglement can lead to an exponential enhancement in the sensitivity for estimating a small parameter.
Our work thus opens a novel pathway towards achieving entanglement-based sensing advantage.
arXiv Detail & Related papers (2024-10-08T10:15:21Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.<n>We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Floquet time-crystals as sensors of AC fields [44.99833362998488]
We show that discrete time crystals can overcome the shot noise limit while allowing long interrogation times.
In such systems, collective interactions stabilize their dynamics against noise making them robust enough to protocol imperfections.
arXiv Detail & Related papers (2023-06-06T18:00:08Z) - Noisy quantum gyroscope [3.2452821874053366]
Existing quantum gyroscope schemes suffer severe deterioration under the influence of decoherence.
We propose a quantum gyroscope scheme breaking through the constraint of the no-go theorem.
arXiv Detail & Related papers (2022-01-26T13:46:11Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.