Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement
- URL: http://arxiv.org/abs/2412.01241v1
- Date: Mon, 02 Dec 2024 08:03:59 GMT
- Title: Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement
- Authors: An Ning, Tai-Yue Li, Nan-Yow Chen,
- Abstract summary: We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.
By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.
In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
- Score: 0.0
- License:
- Abstract: In this study, we propose a novel architecture, the Quantum Pointwise Convolution, which incorporates pointwise convolution within a quantum neural network framework. Our approach leverages the strengths of pointwise convolution to efficiently integrate information across feature channels while adjusting channel outputs. By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships. To address the current limitations of quantum machine learning in the Noisy Intermediate-Scale Quantum (NISQ) era, we implement several design optimizations. These include amplitude encoding for data embedding, allowing more information to be processed with fewer qubits, and a weight-sharing mechanism that accelerates quantum pointwise convolution operations, reducing the need to retrain for each input pixels. In our experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets, where our model demonstrated competitive performance compared to its classical counterpart. Furthermore, these optimizations not only improve the efficiency of the quantum pointwise convolutional layer but also make it more readily deployable in various CNN-based or deep learning models, broadening its potential applications across different architectures.
Related papers
- The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
We present a novel architecture for dissipative quantum neural networks (DQNNs) in which each building block can implement any quantum channel.
We derive a versatile one-to-one parametrization of isometries, allowing for an efficient implementation of the proposed structure.
arXiv Detail & Related papers (2025-02-13T17:38:48Z) - Quantum Convolutional Neural Network with Flexible Stride [7.362858964229726]
We propose a novel quantum convolutional neural network algorithm.
It can flexibly adjust the stride to accommodate different tasks.
It can achieve exponential acceleration of data scale in less memory compared with its classical counterpart.
arXiv Detail & Related papers (2024-12-01T02:37:06Z) - Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.