論文の概要: Data Diversification Methods In Alignment Enhance Math Performance In LLMs
- arxiv url: http://arxiv.org/abs/2507.02173v1
- Date: Wed, 02 Jul 2025 22:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.275255
- Title: Data Diversification Methods In Alignment Enhance Math Performance In LLMs
- Title(参考訳): LLMにおけるアライメントエンハンス数学性能におけるデータ多様化手法
- Authors: Berkan Dokmeci, Qingyang Wu, Ben Athiwaratkun, Ce Zhang, Shuaiwen Leon Song, James Zou,
- Abstract要約: 好み最適化におけるデータ多様化戦略は,大規模言語モデルの数学的推論能力をいかに向上させるかを検討する。
以上の結果から,戦略的に多様化した嗜好データにより,モデルが数学的推論性能を大幅に向上させることができることが示唆された。
- 参考スコア(独自算出の注目度): 32.04990280074816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent advances in preference learning have enhanced alignment in human feedback, mathematical reasoning remains a persistent challenge. We investigate how data diversification strategies in preference optimization can improve the mathematical reasoning abilities of large language models (LLMs). We evaluate three common data generation methods: temperature sampling, Chain-of-Thought prompting, and Monte Carlo Tree Search (MCTS), and introduce Diversified-ThinkSolve (DTS), a novel structured approach that systematically decomposes problems into diverse reasoning paths. Our results show that with strategically diversified preference data, models can substantially improve mathematical reasoning performance, with the best approach yielding gains of 7.1% on GSM8K and 4.2% on MATH over the base model. Despite its strong performance, DTS incurs only a marginal computational overhead (1.03x) compared to the baseline, while MCTS is nearly five times more costly with lower returns. These findings demonstrate that structured exploration of diverse problem-solving methods creates more effective preference data for mathematical alignment than traditional approaches.
- Abstract(参考訳): 嗜好学習の最近の進歩は人間のフィードバックの整合性を高めてきたが、数学的推論は依然として永続的な課題である。
本研究では,大規模言語モデル(LLM)の数学的推論能力を改善するために,優先最適化におけるデータ多様化戦略について検討する。
本研究では,モンテカルロ木探索(MCTS)とDTS(Diversified-ThinkSolve)の3つの一般的なデータ生成手法について検討した。
以上の結果から,GSM8Kでは7.1%,MATHでは4.2%の精度で,戦略的に多様化した選好データにより,モデルが数学的推論性能を大幅に向上できることが示された。
強力な性能にもかかわらず、DTSはベースラインに比べて限界計算オーバーヘッド(1.03x)しか発生しないが、MCTSは低いリターンで約5倍のコストがかかる。
これらの結果から,多種多様な問題解決手法の構造化探索が,従来の手法よりも数学的アライメントに有効な選好データを生み出すことが示唆された。
関連論文リスト
- Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning [54.65050470296886]
本研究では,跳躍を自動的に検出し,中間的推論ステップを欠くことを目的としたCoT Thought Leap Bridge Taskを提案する。
ブリッジされたデータセットに微調整されたモデルが、元のデータセットでトレーニングされたモデルよりも一貫して優れていることを示す。
提案手法は, 蒸留データを効果的に向上させ, 強化学習の出発点として優れたものを提供する。
論文 参考訳(メタデータ) (2025-05-20T17:59:31Z) - Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning [66.43194385702297]
大規模言語モデル(LLM)は、特に強化学習(RL)を通じて強化された場合、強力な推論能力を示している。
NEMOTRON-CROSSTHINKは、多領域コーパスを体系的に組み込んだフレームワークであり、合成および実世界の問合せ対を含む。
論文 参考訳(メタデータ) (2025-04-15T21:37:13Z) - Self-Evolved Preference Optimization for Enhancing Mathematical Reasoning in Small Language Models [17.673293240849787]
我々は、小言語モデル(SLM)における推論を強化する自己進化型データ生成パイプラインSPHEREを紹介する。
SPHEREは、 (i) 自己生成(Self-Generation)、 (ii) 自己補正(Self-Correction)、 (iii) 多様性誘導(diversity induction)、そして、複数の有効な推論軌道を通じて堅牢性を改善する。
本研究では,SPHERE学習モデルがベースバージョンよりも大幅に向上し,特定のベンチマークでGPT-4oにマッチすることを示す。
論文 参考訳(メタデータ) (2025-03-04T14:43:25Z) - MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
数学的推論ステップ拡張のための新しいフレームワークであるMathFimerを紹介する。
我々は、慎重にキュレートしたNuminaMath-FIMデータセットに基づいて、特殊モデルMathFimer-7Bを開発した。
次に、これらのモデルを適用して、解鎖に詳細な中間ステップを挿入することで、既存の数学的推論データセットを強化する。
論文 参考訳(メタデータ) (2025-02-17T11:22:24Z) - Advancing Mathematical Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages [13.377908992869814]
問題解決データは、一般的な数学的コーパスと比較してモデルの数学的能力を大幅に向上させる。
本研究では, 効果的なデータ合成手法を同定し, チュータシップ増幅合成法が最高の性能を発揮することを示す。
論文 参考訳(メタデータ) (2025-01-23T12:14:57Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
OpenAIのo1モデルは、ほとんどのデータセットで最高のパフォーマンスを実現しています。
また、いくつかの推論ベンチマークについて詳細な分析を行う。
論文 参考訳(メタデータ) (2024-10-17T15:09:03Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。