Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
- URL: http://arxiv.org/abs/2507.02199v1
- Date: Wed, 02 Jul 2025 23:35:21 GMT
- Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
- Authors: Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu,
- Abstract summary: Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning.<n>In standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency.<n>We investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
Related papers
- A Survey on Latent Reasoning [100.54120559169735]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities.<n>CoT reasoning that verbalizes intermediate steps limits the model's expressive bandwidth.<n>Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state.
arXiv Detail & Related papers (2025-07-08T17:29:07Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning [48.28847964704554]
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference.<n>Recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance.<n>We introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths.
arXiv Detail & Related papers (2025-05-16T17:47:50Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
We introduce a novel task, code reasoning, to provide a new perspective for the reasoning abilities of large language models.<n>We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks.<n>We present a new pathway exploration pipeline inspired by human intricate problem-solving methods.
arXiv Detail & Related papers (2025-02-17T10:39:58Z) - Efficient Reasoning with Hidden Thinking [48.96945580741641]
Chain-of-Thought (CoT) reasoning has become a powerful framework for improving complex problem-solving capabilities.<n>We propose $textbfHeima$ (as hidden llama), an efficient reasoning framework that leverages reasoning CoTs at hidden latent space.<n>Heima model achieves higher generation efficiency while maintaining or even better zero-shot task accuracy.
arXiv Detail & Related papers (2025-01-31T15:10:29Z) - Understanding Hidden Computations in Chain-of-Thought Reasoning [0.0]
Chain-of-Thought (CoT) prompting has significantly enhanced the reasoning abilities of large language models.<n>Recent studies have shown that models can still perform complex reasoning tasks even when the CoT is replaced with filler(hidden) characters.
arXiv Detail & Related papers (2024-12-05T18:43:11Z) - Markov Chain of Thought for Efficient Mathematical Reasoning [10.678633785012691]
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions.<n>We conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT)<n>Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference.
arXiv Detail & Related papers (2024-10-23T07:53:29Z) - Chain-of-Thought Reasoning Without Prompting [40.92854235219315]
CoT reasoning paths can be elicited from pre-trained language models by simply altering the textitdecoding process.
The presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer.
arXiv Detail & Related papers (2024-02-15T18:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.