Understanding Hidden Computations in Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2412.04537v1
- Date: Thu, 05 Dec 2024 18:43:11 GMT
- Title: Understanding Hidden Computations in Chain-of-Thought Reasoning
- Authors: Aryasomayajula Ram Bharadwaj,
- Abstract summary: Chain-of-Thought (CoT) prompting has significantly enhanced the reasoning abilities of large language models.
Recent studies have shown that models can still perform complex reasoning tasks even when the CoT is replaced with filler(hidden) characters.
- Score: 0.0
- License:
- Abstract: Chain-of-Thought (CoT) prompting has significantly enhanced the reasoning abilities of large language models. However, recent studies have shown that models can still perform complex reasoning tasks even when the CoT is replaced with filler(hidden) characters (e.g., "..."), leaving open questions about how models internally process and represent reasoning steps. In this paper, we investigate methods to decode these hidden characters in transformer models trained with filler CoT sequences. By analyzing layer-wise representations using the logit lens method and examining token rankings, we demonstrate that the hidden characters can be recovered without loss of performance. Our findings provide insights into the internal mechanisms of transformer models and open avenues for improving interpretability and transparency in language model reasoning.
Related papers
- LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.
We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.
Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Talking Heads: Understanding Inter-layer Communication in Transformer Language Models [32.2976613483151]
We analyze a mechanism used in two LMs to selectively inhibit items in a context in one task.
We find that models write into low-rank subspaces of the residual stream to represent features which are then read out by later layers.
arXiv Detail & Related papers (2024-06-13T18:12:01Z) - Calibrating Reasoning in Language Models with Internal Consistency [18.24350001344488]
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks.
LLMs often generate text with obvious mistakes and contradictions.
In this work, we investigate reasoning in LLMs through the lens of internal representations.
arXiv Detail & Related papers (2024-05-29T02:44:12Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
We introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs.
We filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability.
Our approach also reduces hallucinations owing to its high correlation between images and text.
arXiv Detail & Related papers (2024-04-17T07:20:56Z) - Structured World Representations in Maze-Solving Transformers [3.75591091941815]
This work focuses on the abstractions formed by small transformer models.
We find evidence for the consistent emergence of structured internal representations of maze topology and valid paths.
We also take steps towards deciphering the circuity of path-following by identifying attention heads.
arXiv Detail & Related papers (2023-12-05T08:24:26Z) - Transformers are uninterpretable with myopic methods: a case study with
bounded Dyck grammars [36.780346257061495]
Interpretability methods aim to understand the algorithm implemented by a trained model.
We take a critical view of methods that exclusively focus on individual parts of the model.
arXiv Detail & Related papers (2023-12-03T15:34:46Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space.
We show that the resulting projections contain rich semantic information, and draw connection between them and sparse retrieval.
arXiv Detail & Related papers (2022-12-20T16:03:25Z) - Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango [11.344587937052697]
This work initiates the preliminary steps towards a deeper understanding of reasoning mechanisms in large language models.
Our work centers around querying the model while controlling for all but one of the components in a prompt: symbols, patterns, and text.
We posit that text imbues patterns with commonsense knowledge and meaning.
arXiv Detail & Related papers (2022-09-16T02:54:00Z) - VisBERT: Hidden-State Visualizations for Transformers [66.86452388524886]
We present VisBERT, a tool for visualizing the contextual token representations within BERT for the task of (multi-hop) Question Answering.
VisBERT enables users to get insights about the model's internal state and to explore its inference steps or potential shortcomings.
arXiv Detail & Related papers (2020-11-09T15:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.