Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
- URL: http://arxiv.org/abs/2507.02291v1
- Date: Thu, 03 Jul 2025 03:57:26 GMT
- Title: Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
- Authors: Zhaoyu Zhang, Lingyi Wang, Wei Wu, Fuhui Zhou, Qihui Wu,
- Abstract summary: We propose a knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network.<n> Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases.<n>At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead.
- Score: 23.330677629962103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
Related papers
- Task-Oriented Low-Label Semantic Communication With Self-Supervised Learning [67.06363342414397]
Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages.<n>Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation.<n>We propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance.
arXiv Detail & Related papers (2025-05-26T13:06:18Z) - Category-Adaptive Cross-Modal Semantic Refinement and Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
We propose a novel category-adaptive cross-modal semantic refinement and transfer (C$2$SRT) framework to explore the semantic correlation.<n>The proposed framework consists of two complementary modules, i.e., intra-category semantic refinement (ISR) module and inter-category semantic transfer (IST) module.<n>Experiments on OV-MLR benchmarks clearly demonstrate that the proposed C$2$SRT framework outperforms current state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-09T04:00:18Z) - Federated Contrastive Learning for Personalized Semantic Communication [55.46383524190467]
We design a federated contrastive learning framework aimed at supporting personalized semantic communication.
FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station.
To tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator.
arXiv Detail & Related papers (2024-06-13T14:45:35Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Weakly Supervised Semantic Segmentation by Knowledge Graph Inference [11.056545020611397]
This paper introduces a graph reasoning-based approach to enhance Weakly Supervised Semantic (WSSS)
The aim is to improve WSSS holistically by simultaneously enhancing both the multi-label classification and segmentation network stages.
We have achieved state-of-the-art performance in WSSS on the PASCAL VOC 2012 and MS-COCO datasets.
arXiv Detail & Related papers (2023-09-25T11:50:19Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
A novel emergent SC system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning.
The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity.
arXiv Detail & Related papers (2022-10-21T15:33:37Z) - Performance Optimization for Semantic Communications: An Attention-based
Reinforcement Learning Approach [187.4094332217186]
A semantic communication framework is proposed for textual data transmission.
A metric of semantic similarity (MSS) that jointly captures the semantic accuracy and completeness of the recovered text is proposed.
arXiv Detail & Related papers (2022-08-17T11:39:16Z) - Cross Knowledge-based Generative Zero-Shot Learning Approach with
Taxonomy Regularization [5.280368849852332]
We develop a generative network-based ZSL approach equipped with the proposed Cross Knowledge Learning (CKL) scheme and Taxonomy Regularization (TR)
CKL enables more relevant semantic features to be trained for semantic-to-visual feature embedding in ZSL.
TR significantly improves the intersections with unseen images with more generalized visual features generated from generative network.
arXiv Detail & Related papers (2021-01-25T04:38:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.