Weakly Supervised Semantic Segmentation by Knowledge Graph Inference
- URL: http://arxiv.org/abs/2309.14057v2
- Date: Tue, 24 Oct 2023 03:23:05 GMT
- Title: Weakly Supervised Semantic Segmentation by Knowledge Graph Inference
- Authors: Jia Zhang, Bo Peng, Xi Wu
- Abstract summary: This paper introduces a graph reasoning-based approach to enhance Weakly Supervised Semantic (WSSS)
The aim is to improve WSSS holistically by simultaneously enhancing both the multi-label classification and segmentation network stages.
We have achieved state-of-the-art performance in WSSS on the PASCAL VOC 2012 and MS-COCO datasets.
- Score: 11.056545020611397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, existing efforts in Weakly Supervised Semantic Segmentation (WSSS)
based on Convolutional Neural Networks (CNNs) have predominantly focused on
enhancing the multi-label classification network stage, with limited attention
given to the equally important downstream segmentation network. Furthermore,
CNN-based local convolutions lack the ability to model the extensive
inter-category dependencies. Therefore, this paper introduces a graph
reasoning-based approach to enhance WSSS. The aim is to improve WSSS
holistically by simultaneously enhancing both the multi-label classification
and segmentation network stages. In the multi-label classification network
segment, external knowledge is integrated, coupled with GCNs, to globally
reason about inter-class dependencies. This encourages the network to uncover
features in non-salient regions of images, thereby refining the completeness of
generated pseudo-labels. In the segmentation network segment, the proposed
Graph Reasoning Mapping (GRM) module is employed to leverage knowledge obtained
from textual databases, facilitating contextual reasoning for class
representation within image regions. This GRM module enhances feature
representation in high-level semantics of the segmentation network's local
convolutions, while dynamically learning semantic coherence for individual
samples. Using solely image-level supervision, we have achieved
state-of-the-art performance in WSSS on the PASCAL VOC 2012 and MS-COCO
datasets. Extensive experimentation on both the multi-label classification and
segmentation network stages underscores the effectiveness of the proposed graph
reasoning approach for advancing WSSS.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation [13.244183864948848]
We propose a novel Co-Occurrent Matching Network (COMNet), which can promote the quality of the CAMs and enforce the network to pay attention to the entire parts of objects.
Specifically, we perform inter-matching on paired images that contain common classes to enhance the corresponded areas, and construct intra-matching on a single image to propagate the semantic features across the object regions.
The experiments on the Pascal VOC 2012 and MS-COCO datasets show that our network can effectively boost the performance of the baseline model and achieve new state-of-the-art performance.
arXiv Detail & Related papers (2023-09-29T03:55:24Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGR framework exploits prior knowledge of statistical label correlations with deep neural networks.
It first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence.
Then, it introduces the label semantics to guide learning semantic-specific features.
It exploits a graph propagation network to explore graph node interactions.
arXiv Detail & Related papers (2020-09-20T15:05:29Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
We propose a module that learns a long-range dependency graph directly from the image and uses it to propagate contextual information efficiently.
The module is optimised via a novel adaptive diagonal enhancement method and a variational lower bound.
When incorporated into a neural network (SCG-Net), semantic segmentation is performed in an end-to-end manner and competitive performance.
arXiv Detail & Related papers (2020-09-03T12:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.