論文の概要: MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2507.02494v1
- Date: Thu, 03 Jul 2025 09:55:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:16.083734
- Title: MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
- Title(参考訳): MC-INR:メタラーニングとクラスタ型命令型ニューラル表現を用いた多変量科学シミュレーションデータの効率的な符号化
- Authors: Hyunsoo Son, Jeonghyun Noh, Suemin Jeon, Chaoli Wang, Won-Ki Jeong,
- Abstract要約: Inlicit Neural Representation (INR)は、データを連続関数としてエンコードするために広く使われている。
既存のINRベースの手法では,(1)複素構造の非フレキシブル表現,(2)主に単変数データ,(3)構造格子への依存の3つの制限に直面している。
- 参考スコア(独自算出の注目度): 7.21760093645833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
- Abstract(参考訳): Inlicit Neural Representations (INR)は、データを連続的な関数としてエンコードするために広く使われており、メモリ使用量の削減による大規模多変量科学シミュレーションデータの可視化を可能にする。
しかし、既存のINRベースの手法では、(1)複雑な構造の非フレキシブル表現、(2)主に単変数データ、(3)構造化グリッドへの依存の3つの主な制限に直面している。
したがって、複雑な実世界のデータセットに適用した場合、パフォーマンスは低下する。
これらの制約に対処するために、非構造化グリッド上の多変量データを処理する新しいニューラルネットワークベースのフレームワークMC-INRを提案する。
メタラーニングとクラスタリングを組み合わせて、複雑な構造の柔軟なエンコーディングを可能にする。
さらに性能向上のために,局所誤差に基づいてクラスタを適応的に分割する残差ベースの動的再クラスタリング機構を導入する。
また,独立分枝による多変量データを同時に活用する分枝層を提案する。
実験の結果,MC-INRは科学データ符号化タスクにおいて既存の手法よりも優れていた。
関連論文リスト
- Unsupervised Deep Clustering of MNIST with Triplet-Enhanced Convolutional Autoencoders [0.0]
本研究は、MNIST手書き桁のための高度な教師なしクラスタリングシステムを実装した。
ディープ・ニューラル・オートエンコーダは、画像の最小でも解釈可能な表現を開発するために、フェーズ1のトレーニングプロセスを必要とする。
論文 参考訳(メタデータ) (2025-06-11T18:26:13Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR)は、マルチモーダルクエリに基づいた画像検索を目的とした複雑なタスクである。
本稿では,イメージキャプションペアからトリプレットをオンザフライで生成するワンストップフレームワークであるCoLLMを提案する。
我々はLarge Language Models (LLMs) を利用して参照画像の埋め込みと修正テキストを生成する。
論文 参考訳(メタデータ) (2025-03-25T17:59:50Z) - LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding [4.759109475818876]
Implicit Neural Representations (INR)は、多様なデータドメインをまたいだタスクモデリングを統合するための強力なパラダイムであることが証明されている。
本稿では,メタラーニングによるマルチスケール情報をキャプチャする新しい高性能フレームワークLIFTを紹介する。
また、残差接続と表現頻度符号化を組み込んだLIFTの強化版であるReLIFTについても紹介する。
論文 参考訳(メタデータ) (2025-03-19T17:00:58Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Homological Convolutional Neural Networks [4.615338063719135]
本稿では,トポロジ的に制約されたネットワーク表現を通じて,データ構造構造を利用した新しいディープラーニングアーキテクチャを提案する。
5つの古典的な機械学習モデルと3つのディープラーニングモデルに対して、18のベンチマークデータセットでモデルをテストします。
論文 参考訳(メタデータ) (2023-08-26T08:48:51Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
入力複雑性とモデル複雑性を含む学習複雑性の影響を分析する。
より浅層構造と低分解能入力データを探索する再帰畳み込みネットワーク(RCN)を提案する。
学習可能なパラメータを増やさなくてもRCNと統合できる3つのパラメータフリーモジュールを開発した。
論文 参考訳(メタデータ) (2020-06-17T06:19:24Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。