MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
- URL: http://arxiv.org/abs/2507.02494v1
- Date: Thu, 03 Jul 2025 09:55:57 GMT
- Title: MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
- Authors: Hyunsoo Son, Jeonghyun Noh, Suemin Jeon, Chaoli Wang, Won-Ki Jeong,
- Abstract summary: Implicit Neural Representations (INRs) are widely used to encode data as continuous functions.<n>Existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids.
- Score: 7.21760093645833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
Related papers
- Unsupervised Deep Clustering of MNIST with Triplet-Enhanced Convolutional Autoencoders [0.0]
This research implements an advanced unsupervised clustering system for MNIST handwritten digits.<n>A deep neural autoencoder requires a training process during phase one to develop minimal yet interpretive representations of images.
arXiv Detail & Related papers (2025-06-11T18:26:13Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.<n>We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.<n>We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding [4.759109475818876]
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains.<n>We introduce LIFT, a novel, high-performance framework that captures multiscale information through meta-learning.<n>We also introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings.
arXiv Detail & Related papers (2025-03-19T17:00:58Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
We analyze the influence of learning complexity, including the input complexity and model complexity.
We propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data.
We develop three parameter-free modules to integrate with RCN without increasing any learnable parameters.
arXiv Detail & Related papers (2020-06-17T06:19:24Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.