Parametric shape models for vessels learned from segmentations via differentiable voxelization
- URL: http://arxiv.org/abs/2507.02576v1
- Date: Thu, 03 Jul 2025 12:33:21 GMT
- Title: Parametric shape models for vessels learned from segmentations via differentiable voxelization
- Authors: Alina F. Dima, Suprosanna Shit, Huaqi Qiu, Robbie Holland, Tamara T. Mueller, Fabio Antonio Musio, Kaiyuan Yang, Bjoern Menze, Rickmer Braren, Marcus Makowski, Daniel Rueckert,
- Abstract summary: Vessels are complex structures in the body that have been studied extensively in multiple representations.<n>We propose a framework that joins the three representations under differentiable transformations.<n>Our method can accurately capture the geometry of complex vessels, as demonstrated by the volumetric fits in experiments on aortas, aneurysms, and brain vessels.
- Score: 10.898240820246029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vessels are complex structures in the body that have been studied extensively in multiple representations. While voxelization is the most common of them, meshes and parametric models are critical in various applications due to their desirable properties. However, these representations are typically extracted through segmentations and used disjointly from each other. We propose a framework that joins the three representations under differentiable transformations. By leveraging differentiable voxelization, we automatically extract a parametric shape model of the vessels through shape-to-segmentation fitting, where we learn shape parameters from segmentations without the explicit need for ground-truth shape parameters. The vessel is parametrized as centerlines and radii using cubic B-splines, ensuring smoothness and continuity by construction. Meshes are differentiably extracted from the learned shape parameters, resulting in high-fidelity meshes that can be manipulated post-fit. Our method can accurately capture the geometry of complex vessels, as demonstrated by the volumetric fits in experiments on aortas, aneurysms, and brain vessels.
Related papers
- Symbolic Approximations to Ricci-flat Metrics Via Extrinsic Symmetries of Calabi-Yau Hypersurfaces [0.0]
We analyse machine learning approximations to flat metrics of Fermat Calabi-Yau n-folds.<n>We show that the flat metric admits a surprisingly compact representation for certain choices of complex structure moduli.<n>We conclude by distilling the ML models to obtain for the first time closed form expressions for Kahler metrics with near-zero scalar curvature.
arXiv Detail & Related papers (2024-12-27T18:19:26Z) - Explainable Binary Classification of Separable Shape Ensembles [0.0]
Materials scientists utilize image segmentation of micrographs to create large curve ensembles representing grain boundaries of material microstructures.
We seek to bolster this application, using novel pattern recognition formalisms and inference over large ensembles of segmented curves.
arXiv Detail & Related papers (2024-10-16T19:42:47Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models [83.35835521670955]
Surf-D is a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies.
We use the Unsigned Distance Field (UDF) as our surface representation to accommodate arbitrary topologies.
We also propose a new pipeline that employs a point-based AutoEncoder to learn a compact and continuous latent space for accurately encoding UDF.
arXiv Detail & Related papers (2023-11-28T18:56:01Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
The Fisher-Rao information geometry allows for leveraging tools from differential geometry.
We will present some practical uses of these geometric tools in the framework of elliptical distributions.
arXiv Detail & Related papers (2023-10-02T09:23:32Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Parametrizing Product Shape Manifolds by Composite Networks [5.772786223242281]
We show that it is possible to learn an efficient neural network approximation for shape spaces with a special product structure.
Our proposed architecture leverages this structure by separately learning approximations for the low-dimensional factors and a subsequent combination.
arXiv Detail & Related papers (2023-02-28T15:31:23Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
We show how the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
We also show how using the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
arXiv Detail & Related papers (2022-09-21T18:14:38Z) - Elastic shape analysis of surfaces with second-order Sobolev metrics: a
comprehensive numerical framework [11.523323270411959]
This paper introduces a set of numerical methods for shape analysis of 3D surfaces.
We address the computation of geodesics and geodesic distances between parametrized or unparametrized surfaces represented as 3D meshes.
arXiv Detail & Related papers (2022-04-08T18:19:05Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
We introduce the first learning-based method for recovering shapes from Laplacian spectra.
Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues.
Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
arXiv Detail & Related papers (2020-03-14T00:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.