WebSailor: Navigating Super-human Reasoning for Web Agent
- URL: http://arxiv.org/abs/2507.02592v1
- Date: Thu, 03 Jul 2025 12:59:07 GMT
- Title: WebSailor: Navigating Super-human Reasoning for Web Agent
- Authors: Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, Jingren Zhou,
- Abstract summary: WebSailor is a complete post-training methodology designed to instill this crucial capability.<n>Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation.<n>WebSailor significantly outperforms all opensource agents in complex information-seeking tasks.
- Score: 72.5231321118689
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
Related papers
- WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization [68.46693401421923]
WebShaper systematically formalizes IS tasks through set theory.<n>WebShaper achieves state-of-the-art performance among open-sourced IS agents on GAIA and WebWalkerQA benchmarks.
arXiv Detail & Related papers (2025-07-20T17:53:37Z) - LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
We introduce LaMDAgent, a framework that autonomously constructs and optimize full post-training pipelines.<n>LaMDAgent improves tool-use accuracy by 9.0 points while preserving instruction-following capabilities.<n>It uncovers effective post-training strategies that are often overlooked by conventional human-driven exploration.
arXiv Detail & Related papers (2025-05-28T04:30:51Z) - SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios.<n>Existing approaches face critical limitations that lack high-quality training trajectories and suffer from distributional mismatches.<n>This paper introduces SimpleDeepSearcher, a framework that bridges the gap through strategic data engineering rather than complex training paradigms.
arXiv Detail & Related papers (2025-05-22T16:05:02Z) - WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinker is a deep research agent that empowers large reasoning models to autonomously search the web, navigate web pages, and draft research reports during the reasoning process.<n>It also employs an textbfAutonomous Think-Search-and-Draft strategy, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time.<n>Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems.
arXiv Detail & Related papers (2025-04-30T16:25:25Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning.
Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities.
We propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions.
arXiv Detail & Related papers (2024-08-13T20:52:13Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
Humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world.
Recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities.
We introduce KwaiAgents, a generalized information-seeking agent system based on LLMs.
arXiv Detail & Related papers (2023-12-08T08:11:11Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.