De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks
- URL: http://arxiv.org/abs/2507.02606v1
- Date: Thu, 03 Jul 2025 13:30:58 GMT
- Title: De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks
- Authors: Wei Fan, Kejiang Chen, Chang Liu, Weiming Zhang, Nenghai Yu,
- Abstract summary: We study the first systematic evaluation of protective perturbations against voice cloning (VC) under realistic threat models.<n>Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models.<n>We propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution.
- Score: 68.41885995006643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
Related papers
- VoiceCloak: A Multi-Dimensional Defense Framework against Unauthorized Diffusion-based Voice Cloning [14.907575859145423]
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC)<n>DMs have been proven incompatible with proactive defenses due to intricate generative mechanisms of diffusion.<n>We introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading quality in potential unauthorized VC.
arXiv Detail & Related papers (2025-05-18T09:58:48Z) - T2V-OptJail: Discrete Prompt Optimization for Text-to-Video Jailbreak Attacks [67.91652526657599]
We formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail.<n>We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models.<n>The proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate.
arXiv Detail & Related papers (2025-05-10T16:04:52Z) - VocalCrypt: Novel Active Defense Against Deepfake Voice Based on Masking Effect [2.417762825674103]
rapid advancements in AI voice cloning, fueled by machine learning, have significantly impacted text-to-speech (TTS) and voice conversion (VC) fields.<n>We propose a novel active defense method, VocalCrypt, which embeds pseudo-timbre (jamming information) based on SFS into audio segments that are imperceptible to the human ear.<n>In comparison to existing methods, such as adversarial noise incorporation, VocalCrypt significantly enhances robustness and real-time performance.
arXiv Detail & Related papers (2025-02-14T17:43:01Z) - A Practical Survey on Emerging Threats from AI-driven Voice Attacks: How Vulnerable are Commercial Voice Control Systems? [13.115517847161428]
AI-driven audio attacks have revealed new security vulnerabilities in voice control systems.
Our study endeavors to assess the resilience of commercial voice control systems against a spectrum of malicious audio attacks.
Our results suggest that commercial voice control systems exhibit enhanced resistance to existing threats.
arXiv Detail & Related papers (2023-12-10T21:51:13Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
Large Language Models' safety remains a critical concern due to their vulnerability to adversarial attacks.
We introduce the Adversarial Prompt Shield (APS), a lightweight model that excels in detection accuracy and demonstrates resilience against adversarial prompts.
We also propose novel strategies for autonomously generating adversarial training datasets.
arXiv Detail & Related papers (2023-10-31T22:22:10Z) - Defense Against Adversarial Attacks on Audio DeepFake Detection [0.4511923587827302]
Audio DeepFakes (DF) are artificially generated utterances created using deep learning.
Multiple neural network-based methods to detect generated speech have been proposed to prevent the threats.
arXiv Detail & Related papers (2022-12-30T08:41:06Z) - Voicy: Zero-Shot Non-Parallel Voice Conversion in Noisy Reverberant
Environments [76.98764900754111]
Voice Conversion (VC) is a technique that aims to transform the non-linguistic information of a source utterance to change the perceived identity of the speaker.
We propose Voicy, a new VC framework particularly tailored for noisy speech.
Our method, which is inspired by the de-noising auto-encoders framework, is comprised of four encoders (speaker, content, phonetic and acoustic-ASR) and one decoder.
arXiv Detail & Related papers (2021-06-16T15:47:06Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Defense against adversarial attacks on spoofing countermeasures of ASV [95.87555881176529]
This paper introduces a passive defense method, spatial smoothing, and a proactive defense method, adversarial training, to mitigate the vulnerability of ASV spoofing countermeasure models.
The experimental results show that these two defense methods positively help spoofing countermeasure models counter adversarial examples.
arXiv Detail & Related papers (2020-03-06T08:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.