Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
- URL: http://arxiv.org/abs/2507.02652v1
- Date: Thu, 03 Jul 2025 14:18:08 GMT
- Title: Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
- Authors: Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yang Zhao, Hongjin Qian, Zhicheng Dou,
- Abstract summary: HiRA is a hierarchical framework that separates strategic planning from specialized execution.<n>Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities.<n> Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems.
- Score: 30.988785260110248
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
Related papers
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieve is an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router.<n>Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design.
arXiv Detail & Related papers (2025-07-29T17:55:23Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
We present a new benchmark for evaluating a form of retrieval-augmented generation (RAG)<n>RAG requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources.<n>We build it using a synthetic data pipeline that simulates business across product planning, development, and support stages.
arXiv Detail & Related papers (2025-06-29T08:34:59Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Towards AI Search Paradigm [42.62890561623222]
We introduce the AI Search Paradigm, a blueprint for next-generation search systems capable of emulating human information processing and decision-making.<n>The paradigm employs a modular architecture of four LLM-powered agents that dynamically adapt to the full spectrum of information needs.<n>By providing an in-depth guide to these components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
arXiv Detail & Related papers (2025-06-20T17:42:13Z) - SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios.<n>Existing approaches face critical limitations that lack high-quality training trajectories and suffer from distributional mismatches.<n>This paper introduces SimpleDeepSearcher, a framework that bridges the gap through strategic data engineering rather than complex training paradigms.
arXiv Detail & Related papers (2025-05-22T16:05:02Z) - HyperTree Planning: Enhancing LLM Reasoning via Hierarchical Thinking [109.09735490692202]
We propose HyperTree Planning (HTP), a novel reasoning paradigm that constructs hypertree-structured planning outlines for effective planning.<n> Experiments demonstrate the effectiveness of HTP, achieving state-of-the-art accuracy on the TravelPlanner benchmark with Gemini-1.5-Pro, resulting in a 3.6 times performance improvement over o1-preview.
arXiv Detail & Related papers (2025-05-05T02:38:58Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - What Matters in Hierarchical Search for Combinatorial Reasoning Problems? [0.5007502976837217]
Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods.<n>While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts.<n>We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts.
arXiv Detail & Related papers (2024-06-05T15:14:58Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.