論文の概要: Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
- arxiv url: http://arxiv.org/abs/2507.02724v1
- Date: Thu, 03 Jul 2025 15:41:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:16.503884
- Title: Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
- Title(参考訳): タンパク質-タンパク質相互作用予測のための階層型マルチラベルコントラスト学習
- Authors: Shiyi Liu, Buwen Liang, Yuetong Fang, Zixuan Jiang, Renjing Xu,
- Abstract要約: タンパク質間相互作用予測のための階層的コントラストフレームワークであるHIPPOを提案する。
提案手法は、タンパク質の機能クラス間の構造的関係をエミュレートする階層的コントラスト損失関数を含む。
ベンチマークデータセットの実験では、HIPPOが最先端のパフォーマンスを達成し、既存のメソッドを上回り、低データのレシエーションにおいて堅牢性を示すことが示されている。
- 参考スコア(独自算出の注目度): 2.399426243085768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in AI for science have highlighted the power of contrastive learning in bridging heterogeneous biological data modalities. Building on this paradigm, we propose HIPPO (HIerarchical Protein-Protein interaction prediction across Organisms), a hierarchical contrastive framework for protein-protein interaction(PPI) prediction, where protein sequences and their hierarchical attributes are aligned through multi-tiered biological representation matching. The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins. The framework adaptively incorporates domain and family knowledge through a data-driven penalty mechanism, enforcing consistency between the learned embedding space and the intrinsic hierarchy of protein functions. Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes. Notably, the model demonstrates strong zero-shot transferability to other species without retraining, enabling reliable PPI prediction and functional inference even in less characterized or rare organisms where experimental data are limited. Further analysis reveals that hierarchical feature fusion is critical for capturing conserved interaction determinants, such as binding motifs and functional annotations. This work advances cross-species PPI prediction and provides a unified framework for interaction prediction in scenarios with sparse or imbalanced multi-species data.
- Abstract(参考訳): 科学のためのAIの最近の進歩は、異種生物データモダリティをブリッジする際の対照的な学習の力を強調している。
このパラダイムを基礎として,タンパク質とタンパク質の相互作用(PPI)予測のための階層的コントラストフレームワークであるHIPPO(hierarchical Protein-Protein interaction prediction across Organisms)を提案する。
提案手法は、タンパク質の機能クラス間の構造的関係をエミュレートする階層的コントラスト損失関数を含む。
このフレームワークは、データ駆動型ペナルティ機構を通じてドメインと家族の知識を適応的に取り入れ、学習された埋め込み空間とタンパク質機能の固有の階層間の一貫性を強制する。
ベンチマークデータセットの実験では、HIPPOが最先端のパフォーマンスを達成し、既存のメソッドを上回り、低データのレシエーションにおいて堅牢性を示すことが示されている。
特に、実験データに制限がある少ない生物や稀な生物であっても、このモデルは、再訓練なしに、他の種への強力なゼロショット転送可能性を示し、信頼性の高いPPI予測と機能的推論を可能にしている。
さらなる分析により、階層的特徴融合は、結合モチーフや機能アノテーションのような保存された相互作用決定因子を捕捉するのに重要であることが明らかになった。
この研究は、多種間PPI予測を前進させ、スパースまたは不均衡な多種間データを伴うシナリオにおける相互作用予測のための統一的なフレームワークを提供する。
関連論文リスト
- KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction [60.23701115249195]
我々は遺伝子オントロジーとタンパク質の性質から事前知識を統合する新しいディープラーニングフレームワークKEPLAを提案する。
2つのベンチマークデータセットの実験では、KEPLAは一貫して最先端のベースラインを上回っている。
さらに、知識グラフ関係と横断的注意マップに基づく解釈可能性分析は、基礎となる予測メカニズムに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-06-16T08:02:42Z) - Beyond Simple Concatenation: Fairly Assessing PLM Architectures for Multi-Chain Protein-Protein Interactions Prediction [0.2509487459755192]
タンパク質とタンパク質の相互作用 (PPIs) は、多くの細胞プロセスの基礎である。
PLMはタンパク質の構造と機能を予測するのに顕著な成功を収めた。
シークエンスベースのPPI結合親和性予測への応用は、いまだに未検討である。
論文 参考訳(メタデータ) (2025-05-26T14:23:08Z) - Bidirectional Hierarchical Protein Multi-Modal Representation Learning [4.682021474006426]
大規模タンパク質配列で事前訓練されたタンパク質言語モデル(pLM)は、配列ベースタスクにおいて大きな成功を収めた。
3次元構造情報を活用するために設計されたグラフニューラルネットワーク(GNN)は、タンパク質関連予測タスクにおいて有望な一般化を示している。
本フレームワークでは,PLMの生成するシーケンシャル表現とGNN抽出した構造特徴との効果的な相互作用を実現するために,注意とゲーティング機構を採用している。
論文 参考訳(メタデータ) (2025-04-07T06:47:49Z) - The Signed Two-Space Proximity Model for Learning Representations in Protein-Protein Interaction Networks [16.396309363020908]
複雑なタンパク質-タンパク質相互作用(PPI)の正確な予測は、生物学的プロセスの復号に不可欠である。
署名されたPPIネットワークに対して,S2-SPM(Signed Two-Space Proximity Model)を提案する。
我々のアプローチは、極端なタンパク質プロファイルを表すアーチタイプを識別することを可能にする。
論文 参考訳(メタデータ) (2025-03-05T21:08:58Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
タンパク質-タンパク質相互作用(PPI)の予測は、生物学的機能や疾患を理解する上で重要である。
PPI予測に対する従来の機械学習アプローチは、主に直接的な物理的相互作用に焦点を当てていた。
PPIに適したLLMを用いた新しいフレームワークProLLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T05:32:42Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
化合物-タンパク質相互作用予測は、合理的な薬物発見のための化合物-タンパク質相互作用のパターンと強度を予測することを目的としている。
既存のディープラーニングベースの手法では、タンパク質配列や構造が単一のモダリティしか利用していない。
CPI予測のためのマルチスケールタンパク質配列構造コントラストフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-13T03:51:10Z) - Improved K-mer Based Prediction of Protein-Protein Interactions With
Chaos Game Representation, Deep Learning and Reduced Representation Bias [0.0]
本稿では,対話データセットからユニークなペアを抽出し,非バイアス付き機械学習のための非冗長なペアデータを生成する手法を提案する。
我々は,タンパク質のコード遺伝子のカオスゲーム表現から相互作用を学習し,予測できる畳み込みニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2023-10-23T10:02:23Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Unknown from Correlations: Graph Neural Network for
Inter-novel-protein Interaction Prediction [7.860159889216291]
既存のメソッドは、見えないデータセットでテストすると、パフォーマンスが大幅に低下します。
本稿では,タンパク質間相互作用予測のためのグラフニューラルネットワーク(GNN-PPI)を提案する。
論文 参考訳(メタデータ) (2021-05-14T08:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。