Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach
- URL: http://arxiv.org/abs/2507.02826v2
- Date: Fri, 04 Jul 2025 08:41:32 GMT
- Title: Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach
- Authors: Panpan Ji, Junni Song, Hang Xiao, Hanyu Liu, Chao Li,
- Abstract summary: We propose a novel framework called the Dynamic Contrastive Dual-Path Network (D-HAR)<n>The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseCDPNet branches collaboratively process multimodal sensor data.<n>Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction.<n>Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation.
- Score: 3.0868241505670198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor-based Human Activity Recognition (HAR) is a core technology that enables intelligent systems to perceive and interact with their environment. However, multimodal HAR systems still encounter key challenges, such as difficulties in cross-modal feature alignment and imbalanced modality contributions. To address these issues, we propose a novel framework called the Dynamic Contrastive Dual-Path Network (DCDP-HAR). The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseNet branches collaboratively process multimodal sensor data. Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction. Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation, effectively alleviating modality competition. In addition, a momentum-based gradient accumulation strategy is adopted to enhance training stability. We conduct ablation studies to validate the effectiveness of each component and perform extensive comparative experiments on four public benchmark datasets.
Related papers
- MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - A Comparative Study of Human Activity Recognition: Motion, Tactile, and multi-modal Approaches [43.97520291340696]
This study evaluates the ability of a vision-based tactile sensor to classify 15 activities.<n>We propose a multi-modal framework combining tactile and motion data to leverage their complementary strengths.
arXiv Detail & Related papers (2025-05-13T15:20:21Z) - Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detection aims to pinpoint prominent objects within aligned pairs of visible and thermal infrared images.<n>Traditional encoder-decoder architectures may not have adequately considered the robustness against noise originating from defective modalities.<n>We propose the ConTriNet, a robust Confluent Triple-Flow Network employing a Divide-and-Conquer strategy.
arXiv Detail & Related papers (2024-12-02T14:44:39Z) - TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework [9.592695064018487]
TiCoSS is a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching.<n>This study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function.
arXiv Detail & Related papers (2024-07-25T13:31:55Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Multimodal Visual-Tactile Representation Learning through
Self-Supervised Contrastive Pre-Training [0.850206009406913]
MViTac is a novel methodology that leverages contrastive learning to integrate vision and touch sensations in a self-supervised fashion.
By availing both sensory inputs, MViTac leverages intra and inter-modality losses for learning representations, resulting in enhanced material property classification and more adept grasping prediction.
arXiv Detail & Related papers (2024-01-22T15:11:57Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Multi-modal Fusion for Single-Stage Continuous Gesture Recognition [45.19890687786009]
We introduce a single-stage continuous gesture recognition framework, called Temporal Multi-Modal Fusion (TMMF)
TMMF can detect and classify multiple gestures in a video via a single model.
This approach learns the natural transitions between gestures and non-gestures without the need for a pre-processing segmentation step.
arXiv Detail & Related papers (2020-11-10T07:09:35Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.