Imprints of information scrambling on eigenstates of a quantum chaotic system
- URL: http://arxiv.org/abs/2507.02853v1
- Date: Thu, 03 Jul 2025 17:57:23 GMT
- Title: Imprints of information scrambling on eigenstates of a quantum chaotic system
- Authors: Bikram Pain, Ratul Thakur, Sthitadhi Roy,
- Abstract summary: We show how the eigenstates of a chaotic system can encode the full anatomy of quantum chaos.<n>Our work goes beyond the descriptions offered by random matrix theory and the eigenstatetemporal thermalisation hypothesis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How are the spatial and temporal patterns of information scrambling in locally interacting quantum many-body systems imprinted on the eigenstates of the system's time-evolution operator? We address this question by identifying statistical correlations among sets of minimally four eigenstates that provide a unified framework for various measures of information scrambling. These include operator mutual information and operator entanglement entropy of the time-evolution operator, as well as more conventional diagnostics such as two-point dynamical correlations and out-of-time-ordered correlators. We demonstrate this framework by deriving exact results for eigenstate correlations in a minimal model of quantum chaos -- Floquet dual-unitary circuits. These results reveal not only the butterfly effect and the information lightcone, but also finer structures of scrambling within the lightcone. Our work thus shows how the eigenstates of a chaotic system can encode the full spatiotemporal anatomy of quantum chaos, going beyond the descriptions offered by random matrix theory and the eigenstate thermalisation hypothesis.
Related papers
- Observation of anomalous information scrambling in a Rydberg atom array [5.591432092887684]
Quantum information scrambling describes the propagation and effective loss of local information.
Here, we report the experimental observation of anomalous information scrambling in an atomic tweezer array.
arXiv Detail & Related papers (2024-10-21T16:40:25Z) - Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array [23.95382881394397]
We present the first measurements of out-of-time correlators and Holevo information in a Rydberg atom array.
By leveraging these tools, we observe a novel qu-temporal collapse-revival behaviour of quantum information.
Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints.
arXiv Detail & Related papers (2024-10-20T17:44:39Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Quantum information spreading in random spin chains with topological
order [0.0]
Tripartite mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring them.
We study random spin chains that exhibit phase transitions accompanying non-trivial change in topological properties.
Quench dynamics of the EE and TMI display interesting behaviors providing essential perspective concerning encoding of quantum information.
arXiv Detail & Related papers (2022-05-06T04:26:52Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Local Operator Entanglement in Spin Chains [0.0]
Local perturbations can affect the entire quantum system.
quantum computers employ non-equilibrium processes for computations.
In this paper, we investigate the evolution of bi- and tripartite operator mutual information of the time-evolution operator and the Pauli spin operators.
arXiv Detail & Related papers (2020-12-29T05:11:28Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.