Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array
- URL: http://arxiv.org/abs/2410.15455v1
- Date: Sun, 20 Oct 2024 17:44:39 GMT
- Title: Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array
- Authors: De-Sheng Xiang, Yao-Wen Zhang, Hao-Xiang Liu, Peng Zhou, Dong Yuan, Kuan Zhang, Shun-Yao Zhang, Biao Xu, Lu Liu, Yitong Li, Lin Li,
- Abstract summary: We present the first measurements of out-of-time correlators and Holevo information in a Rydberg atom array.
By leveraging these tools, we observe a novel qu-temporal collapse-revival behaviour of quantum information.
Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints.
- Score: 23.95382881394397
- License:
- Abstract: Interactions of isolated quantum many-body systems typically scramble local information into the entire system and make it unrecoverable. Ergodicity-breaking systems possess the potential to exhibit fundamentally different information scrambling dynamics beyond this paradigm. For many-body localized systems with strong ergodicity breaking, local transport vanishes and information scrambles logarithmically slowly. Whereas in Rydberg atom arrays, local qubit flips induce dynamical retardation on surrounding qubits through the Rydberg blockade effect, giving rise to quantum many-body scars that weakly break ergodicity, and resulting in the predicted unconventional quantum information spreading behaviours. Here, we present the first measurements of out-of-time-ordered correlators and Holevo information in a Rydberg atom array, enabling us to precisely track quantum information scrambling and transport dynamics. By leveraging these tools, we observe a novel spatio-temporal collapse-and-revival behaviour of quantum information, which differs from both typical chaotic and many-body localized systems. Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints, and demonstrates an effective digital-analogue approach to coherently reverse time evolution and steer information propagation in near-term quantum devices.
Related papers
- Observation of anomalous information scrambling in a Rydberg atom array [5.591432092887684]
Quantum information scrambling describes the propagation and effective loss of local information.
Here, we report the experimental observation of anomalous information scrambling in an atomic tweezer array.
arXiv Detail & Related papers (2024-10-21T16:40:25Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Efficient Large-Scale Many-Body Quantum Dynamics via Local-Information Time Evolution [0.0]
We use the recently introduced information lattice to organize quantum information into different scales.
We define local information and information currents which we employ to systematically discard long-range quantum correlations.
We present results for energy transport in the mixed-field Ising model and magnetization transport in an open XX spin chain.
arXiv Detail & Related papers (2023-10-09T18:00:07Z) - Quantum Information Scrambling in Quantum Many-body Scarred Systems [10.413943995320887]
We study the quantum information scrambling dynamics in quantum many-body scarred systems.
We find that both the OTOC and Holevo information exhibit a linear light cone and periodic oscillations inside the light cone for initial states within the scarred subspace.
arXiv Detail & Related papers (2022-01-05T19:00:02Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.