Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
- URL: http://arxiv.org/abs/2507.02860v1
- Date: Thu, 03 Jul 2025 17:59:54 GMT
- Title: Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
- Authors: Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai,
- Abstract summary: EasyCache is a training-free acceleration framework for video diffusion models.<n>We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo.<n>Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$times$ compared to the original baselines.
- Score: 57.7533917467934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
Related papers
- MagCache: Fast Video Generation with Magnitude-Aware Cache [91.51242917160373]
We introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts.<n>We introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy.<n> Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively.
arXiv Detail & Related papers (2025-06-10T17:59:02Z) - QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation [84.91431271257437]
Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation.<n>DiTs come with significant drawbacks, including increased computational and memory costs.<n>We propose QuantCache, a novel training-free inference acceleration framework.
arXiv Detail & Related papers (2025-03-09T10:31:51Z) - FlexCache: Flexible Approximate Cache System for Video Diffusion [1.6211899643913996]
We present FlexCache, a flexible approximate cache system that addresses the challenges in two main designs.<n>We find that FlexCache reaches 1.26 times higher throughput and 25% lower cost compared to the state-of-the-art diffusion approximate cache system.
arXiv Detail & Related papers (2024-12-18T00:35:16Z) - Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
Diffusion Transformers (DiTs) rely on larger models and heavier attention mechanisms, resulting in slower inference speeds.
We introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache)
We also introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, controlling the compute allocation based on motion content.
arXiv Detail & Related papers (2024-11-04T18:59:44Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.<n>We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.