論文の概要: OAK -- Onboarding with Actionable Knowledge
- arxiv url: http://arxiv.org/abs/2507.02914v1
- Date: Wed, 25 Jun 2025 07:03:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.516374
- Title: OAK -- Onboarding with Actionable Knowledge
- Title(参考訳): OAK -- 行動可能な知識によるオンボーディング
- Authors: Steve Devènes, Marine Capallera, Robin Cherix, Elena Mugellini, Omar Abou Khaled, Francesco Carrino,
- Abstract要約: 熟練したオペレーターが退社したときの知識の喪失は、企業にとって重要な問題だ。
本稿では,知識グラフの埋め込みとマルチモーダルインタフェースを組み合わせて専門知識の収集と検索を行う手法を提案する。
- 参考スコア(独自算出の注目度): 1.0941063815157699
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The loss of knowledge when skilled operators leave poses a critical issue for companies. This know-how is diverse and unstructured. We propose a novel method that combines knowledge graph embeddings and multi-modal interfaces to collect and retrieve expertise, making it actionable. Our approach supports decision-making on the shop floor. Additionally, we leverage LLMs to improve query understanding and provide adapted answers. As application case studies, we developed a proof-of-concept for quality control in high precision manufacturing.
- Abstract(参考訳): 熟練したオペレーターが退社した場合の知識の喪失は、企業にとって重大な問題となる。
このノウハウは多様で、構造化されていない。
本稿では,知識グラフの埋め込みとマルチモーダルインタフェースを組み合わせて専門知識の収集と検索を行う手法を提案する。
当社のアプローチは、店舗のフロアでの意思決定を支援する。
さらに、LLMを活用して、クエリ理解を改善し、適切な回答を提供する。
応用事例として, 高精度製造における品質管理のための概念実証法を開発した。
関連論文リスト
- Video-MMMU: Evaluating Knowledge Acquisition from Multi-Discipline Professional Videos [44.36644075780221]
Video-MMMUは、ビデオから知識を取得し、活用するLMMの能力を評価するために設計されたベンチマークである。
Video-MMMUには、300のエキスパートレベルのビデオと、6つの分野にわたる900の人間による注釈付き質問が収集されている。
デルタ知識(Deltaknowledge)は、ビデオ視聴後の性能改善を定量化する。
論文 参考訳(メタデータ) (2025-01-23T16:51:47Z) - Enhancing Question Answering for Enterprise Knowledge Bases using Large Language Models [46.51659135636255]
EKRGは大規模言語モデル(LLM)に基づく新しい検索生成フレームワークである
知識検索者の学習に十分な文書検索ペアを生成するために,LLMを用いた命令チューニング手法を提案する。
我々は、学習過程の効率化を図るために、関連性に敏感な教師学生学習戦略を開発する。
論文 参考訳(メタデータ) (2024-04-10T10:38:17Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
知識を統合する手法が開発され、外部モジュールを通してLLMをドメイン固有の知識グラフに拡張した。
本研究は,未知の知識をLLMに効率的に統合することで,未知の知識を不要に重複させるという,新たな問題に焦点をあてる。
新しい知識を導入するリスクは、既存の知識を忘れることである。
論文 参考訳(メタデータ) (2024-02-18T03:36:26Z) - Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration [39.603649838876294]
本研究では,LLMの知識ギャップを同定し,知識ギャップが存在する場合の質問への回答を控えるアプローチについて検討する。
保留集合上での自己回帰と過度信頼の失敗により、我々は2つの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-01T06:11:49Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Leveraging Skill-to-Skill Supervision for Knowledge Tracing [13.753990664747265]
知識追跡は知的学習システムにおいて重要な役割を担っている。
知識追跡モデルの最近の進歩は、問題解決の歴史をよりうまく活用することを可能にしている。
知識を直接組み込む知識トレースアルゴリズムは、限られたデータやコールドスタートの設定において重要である。
論文 参考訳(メタデータ) (2023-06-12T03:23:22Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
本稿では,学習前の言語モデルが外部コーパスから検索することなく,関連する潜在知識を活用できるようにするための,Knowledge Ruminationと呼ばれる新しいパラダイムを提案する。
本稿では,RoBERTa,DeBERTa,GPT-3などの言語モデルに適用する。
論文 参考訳(メタデータ) (2023-05-15T15:47:09Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
我々は、OK-VQAのオープンドメインマルチモーダルタスクにおいて、最先端の強力な結果をもたらす新しいモデルである知識拡張トランスフォーマー(KAT)を提案する。
提案手法は,エンド・ツー・エンドのエンコーダ・デコーダアーキテクチャにおいて暗黙的かつ明示的な知識を統合しつつ,回答生成時に両知識源を共同で推論する。
我々の分析では、モデル予測の解釈可能性の向上に、明示的な知識統合のさらなる利点が見られる。
論文 参考訳(メタデータ) (2021-12-16T04:37:10Z) - Incremental Knowledge Based Question Answering [52.041815783025186]
人間と同じように学習能力を段階的に拡張できるインクリメンタルKBQA学習フレームワークを提案します。
具体的には、破滅的な忘れ問題を克服するために、マージン希釈損失と協調選択方法からなる。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
論文 参考訳(メタデータ) (2021-01-18T09:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。