論文の概要: Visual-Conversational Interface for Evidence-Based Explanation of Diabetes Risk Prediction
- arxiv url: http://arxiv.org/abs/2507.02920v1
- Date: Wed, 25 Jun 2025 14:56:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.522506
- Title: Visual-Conversational Interface for Evidence-Based Explanation of Diabetes Risk Prediction
- Title(参考訳): 糖尿病リスク予測のエビデンスに基づく説明のための視覚対話インタフェース
- Authors: Reza Samimi, Aditya Bhattacharya, Lucija Gosak, Gregor Stiglic, Katrien Verbert,
- Abstract要約: 本稿では,対話型ビジュアライゼーションと対話型エージェントを組み合わせて糖尿病リスク評価を説明する統合型意思決定支援システムを提案する。
我々は30人の医療従事者を対象に混合手法による研究を行い、対話的な相互作用が、医療従事者がモデルアセスメントを明確に理解するのに役立ったことを発見した。
- 参考スコア(独自算出の注目度): 1.8538021146309331
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Healthcare professionals need effective ways to use, understand, and validate AI-driven clinical decision support systems. Existing systems face two key limitations: complex visualizations and a lack of grounding in scientific evidence. We present an integrated decision support system that combines interactive visualizations with a conversational agent to explain diabetes risk assessments. We propose a hybrid prompt handling approach combining fine-tuned language models for analytical queries with general Large Language Models (LLMs) for broader medical questions, a methodology for grounding AI explanations in scientific evidence, and a feature range analysis technique to support deeper understanding of feature contributions. We conducted a mixed-methods study with 30 healthcare professionals and found that the conversational interactions helped healthcare professionals build a clear understanding of model assessments, while the integration of scientific evidence calibrated trust in the system's decisions. Most participants reported that the system supported both patient risk evaluation and recommendation.
- Abstract(参考訳): 医療専門家は、AIによる臨床意思決定支援システムの使用、理解、検証に効果的な方法が必要である。
既存のシステムは、複雑な視覚化と科学的証拠の根拠の欠如という、2つの重要な制限に直面している。
本稿では,対話型ビジュアライゼーションと対話型エージェントを組み合わせて糖尿病リスク評価を説明する統合型意思決定支援システムを提案する。
本稿では,分析クエリのための微調整言語モデルと一般大言語モデル(LLM)を組み合わせたハイブリッド・プロンプト処理手法を提案する。
我々は、30人の医療専門家と混合方法論の研究を行い、対話的な相互作用が、医療従事者がモデルアセスメントを明確に理解するのに役立ち、一方、科学的証拠の統合がシステムの決定に対する信頼を校正することを発見した。
ほとんどの参加者は、このシステムが患者のリスク評価とレコメンデーションの両方を支持していると報告した。
関連論文リスト
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
医学における大きな言語モデル(LLM)は印象的な能力を実現しているが、体系的で透明で検証可能な推論を行う能力に重大なギャップが残っている。
本稿は、この新興分野に関する最初の体系的なレビューを提供する。
本稿では,学習時間戦略とテスト時間メカニズムに分類した推論強化手法の分類法を提案する。
論文 参考訳(メタデータ) (2025-08-01T14:41:31Z) - GEMeX-ThinkVG: Towards Thinking with Visual Grounding in Medical VQA via Reinforcement Learning [50.94508930739623]
医学的視覚的質問応答は、医学的イメージに基づいた自然言語的質問にモデルで答えることによって、臨床的な意思決定を支援することを目的としている。
現状の手法は, 信頼性の限界や解釈可能性の低下に悩まされており, 臨床医や患者がモデル生成の回答を理解し, 信頼する能力が損なわれている。
この研究はまず、回答生成を中間的推論ステップに分解するThinking with Visual Groundingデータセットを提案する。
本稿では,強化学習のための新たな報奨機構を導入し,モデル推論プロセスと最終解の整合性を改善した。
論文 参考訳(メタデータ) (2025-06-22T08:09:58Z) - A User Study Evaluating Argumentative Explanations in Diagnostic Decision Support [2.020765276735129]
この研究は、診断プロセスを強化する最も効果的で有用な説明を見つけることを目的としている。
医師は様々な種類の説明を評価するために調査を行った。
論文 参考訳(メタデータ) (2025-05-15T11:42:24Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Can Generative AI Support Patients' & Caregivers' Informational Needs? Towards Task-Centric Evaluation Of AI Systems [0.7124736158080937]
人間の理解と意思決定を中心とする評価パラダイムを開発する。
具体的なタスクにおける人を支援するための生成AIシステムの有用性について検討する。
我々は,放射線技師の反応に対して,最先端の2つの生成AIシステムを評価する。
論文 参考訳(メタデータ) (2024-01-31T23:24:37Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
論文は、解釈可能なAIプロセス、方法、応用、および医療における実装の課題についてレビューする。
医療における堅牢な解釈可能性アプローチの重要な役割を包括的に理解することを目的としている。
論文 参考訳(メタデータ) (2023-11-18T12:29:18Z) - Survey on Adversarial Attack and Defense for Medical Image Analysis: Methods and Challenges [64.63744409431001]
医療画像解析における敵攻撃・防衛の進歩に関する総合的な調査を報告する。
公正な比較のために、逆向きに堅牢な診断モデルのための新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2023-03-24T16:38:58Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Moral Decision-Making in Medical Hybrid Intelligent Systems: A Team
Design Patterns Approach to the Bias Mitigation and Data Sharing Design
Problems [0.0]
チームデザインパターン(TDP)は、決定が道徳的な要素を持つ設計問題の成功と再利用可能な構成を記述する。
本稿では,医療用hiシステムにおける2つの設計問題の解のセットについて述べる。
パターンの理解性、有効性、一般化性に関するユーザビリティを評価するために、調査が作成されました。
論文 参考訳(メタデータ) (2021-02-16T17:09:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。