論文の概要: Domain Knowledge in Artificial Intelligence: Using Conceptual Modeling to Increase Machine Learning Accuracy and Explainability
- arxiv url: http://arxiv.org/abs/2507.02922v1
- Date: Wed, 25 Jun 2025 15:34:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.525238
- Title: Domain Knowledge in Artificial Intelligence: Using Conceptual Modeling to Increase Machine Learning Accuracy and Explainability
- Title(参考訳): 人工知能におけるドメイン知識:概念モデリングを用いて機械学習の精度と説明可能性を高める
- Authors: V. C. Storey, J. Parsons, A. Castellanos, M. Tremblay, R. Lukyanenko, W. Maass, A. Castillo,
- Abstract要約: 本研究では、概念モデルに表されるドメイン知識を用いて、機械学習モデルのトレーニングに使用されるデータの準備を改善することを提案する。
我々は,機械学習におけるデータ準備のガイドラインからなる概念モデリング・フォー・機械学習(CMML)と呼ばれる手法を開発し,実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning enables the extraction of useful information from large, diverse datasets. However, despite many successful applications, machine learning continues to suffer from performance and transparency issues. These challenges can be partially attributed to the limited use of domain knowledge by machine learning models. This research proposes using the domain knowledge represented in conceptual models to improve the preparation of the data used to train machine learning models. We develop and demonstrate a method, called the Conceptual Modeling for Machine Learning (CMML), which is comprised of guidelines for data preparation in machine learning and based on conceptual modeling constructs and principles. To assess the impact of CMML on machine learning outcomes, we first applied it to two real-world problems to evaluate its impact on model performance. We then solicited an assessment by data scientists on the applicability of the method. These results demonstrate the value of CMML for improving machine learning outcomes.
- Abstract(参考訳): 機械学習は、大規模で多様なデータセットから有用な情報を抽出することを可能にする。
しかし、多くのアプリケーションが成功したにもかかわらず、機械学習はパフォーマンスと透明性の問題に悩まされ続けている。
これらの課題は、部分的には機械学習モデルによるドメイン知識の使用制限による可能性がある。
本研究では、概念モデルに表されるドメイン知識を用いて、機械学習モデルのトレーニングに使用されるデータの準備を改善することを提案する。
本稿では,機械学習におけるデータ準備のガイドラインと,概念モデリングの構造と原理に基づく概念モデリング手法である概念モデリング機械学習(CMML)を開発し,実証する。
機械学習結果に対するCMMLの影響を評価するため,まず実世界の2つの問題に適用し,モデル性能への影響を評価した。
そして,本手法の適用性について,データ科学者による評価を提出した。
これらの結果は、機械学習の結果を改善するためのCMMLの価値を示している。
関連論文リスト
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Zero-Knowledge Proof-based Verifiable Decentralized Machine Learning in Communication Network: A Comprehensive Survey [31.111210313340454]
マシンラーニングに対する分散型アプローチは、信頼性と妥当性に関する課題を導入します。
我々はZKP-VML(Zero-Knowledge Proof-based Verifiable Machine Learning)の総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-10-23T12:15:23Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Learning from Mistakes based on Class Weighting with Application to
Neural Architecture Search [12.317568257671427]
ミスからの学習(LFM)という,シンプルで効果的な多段階最適化フレームワークを提案する。
主な目的は、将来の同様のミスを防ぐために、再重み付け技術を用いて、ターゲットタスクで効果的に実行するモデルを訓練することである。
本定式化では,モデルの検証損失を最小限に抑えてクラスウェイトを学習し,クラスワイド性能と実データにより重み付けされた画像生成装置の合成データを用いてモデルを再学習する。
論文 参考訳(メタデータ) (2021-12-01T04:56:49Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
ほとんどの機械学習(ML)タスクでは、与えられたデータセットで学習パフォーマンスを評価するには、集中的な計算が必要である。
学習性能を効率的に推定する能力は、アクティブラーニング、データ品質管理、データバリュエーションといった幅広いアプリケーションに恩恵をもたらす可能性がある。
最近の実証研究では、多くの一般的なMLモデルに対して、少量のサンプルを用いて任意の入力データセットの学習性能を予測するパラメトリックモデルを正確に学習できることが示されている。
論文 参考訳(メタデータ) (2021-07-13T18:56:04Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。