論文の概要: Modeling Urban Food Insecurity with Google Street View Images
- arxiv url: http://arxiv.org/abs/2507.02924v1
- Date: Wed, 25 Jun 2025 21:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.526325
- Title: Modeling Urban Food Insecurity with Google Street View Images
- Title(参考訳): Googleストリートビュー画像を用いた都市食品の安全性のモデル化
- Authors: David Li,
- Abstract要約: 食品の安全性を識別するための既存のアプローチは、質的、定量的な調査データに大きく依存している。
本研究は,センサス・トラクターレベルでの食品の安全性をモデル化する上で,街路レベルの画像を使用することの有効性について検討する。
- 参考スコア(独自算出の注目度): 2.6563139755809364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Food insecurity is a significant social and public health issue that plagues many urban metropolitan areas around the world. Existing approaches to identifying food insecurity rely primarily on qualitative and quantitative survey data, which is difficult to scale. This project seeks to explore the effectiveness of using street-level images in modeling food insecurity at the census tract level. To do so, we propose a two-step process of feature extraction and gated attention for image aggregation. We evaluate the effectiveness of our model by comparing against other model architectures, interpreting our learned weights, and performing a case study. While our model falls slightly short in terms of its predictive power, we believe our approach still has the potential to supplement existing methods of identifying food insecurity for urban planners and policymakers.
- Abstract(参考訳): 食品の安全性は、世界中の多くの都市部を悩ませている、社会と公共の健康の問題である。
食品の安全性を識別するための既存のアプローチは、主に質的かつ定量的な調査データに依存しており、スケーリングは困難である。
本研究は,センサス・トラクターレベルでの食品の安全性をモデル化する上で,街路レベルの画像を使用することの有効性について検討する。
そこで本稿では,特徴抽出の2段階プロセスを提案し,画像アグリゲーションに注意を喚起する。
我々は,他のモデルアーキテクチャと比較し,学習した重みを解釈し,ケーススタディを実施することにより,モデルの有効性を評価する。
われわれのモデルは予測力に関してわずかに不足するが、我々のアプローチは依然として、都市計画者や政策立案者のための食品の安全性を識別する既存の方法を補う可能性があると信じている。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
現在の画像に基づく食品部分推定アルゴリズムは、ユーザが食事の画像を1、2回取ることを前提としている。
本稿では,静止型ユーザ向けカメラを用いて,機器上の食品の追跡を行う革新的なソリューションを提案する。
本システムは,スープやシチューなどの液状固形不均一混合物の栄養含量の推定に信頼性が高い。
論文 参考訳(メタデータ) (2024-05-12T00:16:02Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
DailyFood-172とDailyFood-16という2つの新しいベンチマークを、毎日の食事から食のイメージをキュレートする。
これらの2つのデータセットは、よく計算された食品画像領域から日常的な食品画像領域へのアプローチの伝達性を評価するために使用される。
論文 参考訳(メタデータ) (2024-03-12T08:32:23Z) - Forecasting trends in food security with real time data [0.0]
我々は,マリ,ナイジェリア,シリア,イエメンの4カ国で,60日間連続して食料消費の水準を予測する定量的手法を提案する。
この手法は、World Food Programmeのグローバルな飢餓モニタリングシステムから入手可能なデータに基づいて構築されている。
論文 参考訳(メタデータ) (2023-12-01T14:42:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
本稿では,食品セキュリティアプリケーションにおけるAIファンデーションモデルの統合について検討する。
本研究は, 収穫型マッピング, 耕作地マッピング, フィールドデライン化, 収穫量予測における利用状況について検討した。
論文 参考訳(メタデータ) (2023-10-31T09:15:35Z) - Diffusion Model with Clustering-based Conditioning for Food Image
Generation [22.154182296023404]
深層学習に基づく手法は、食品分類、セグメンテーション、部分サイズ推定などの画像解析に一般的に用いられている。
潜在的な解決策の1つは、データ拡張に合成食品画像を使用することである。
本稿では,高品質で代表的な食品画像を生成するための効果的なクラスタリングベースのトレーニングフレームワークであるClusDiffを提案する。
論文 参考訳(メタデータ) (2023-09-01T01:40:39Z) - Transferring Knowledge for Food Image Segmentation using Transformers
and Convolutions [65.50975507723827]
食品画像のセグメンテーションは、食品の皿の栄養価を推定するなど、ユビキタスな用途を持つ重要なタスクである。
1つの課題は、食品が重なり合ったり混ざったりし、区別が難しいことだ。
2つのモデルが訓練され、比較される。1つは畳み込みニューラルネットワークに基づくもので、もう1つは画像変換器(BEiT)のための双方向表現に関するものである。
BEiTモデルは、FoodSeg103上の49.4の結合の平均的交点を達成することで、従来の最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2023-06-15T15:38:10Z) - A Framework for Evaluating the Impact of Food Security Scenarios [0.0]
このケーススタディは、国連食糧農業機関(FAOSTAT)、世界銀行、米国農務省(USDA)のデータを用いて作成された、独自の時系列食品セキュリティデータベースに基づいている。
提案手法は,食品セキュリティにおけるシナリオの潜在的な影響を予測するために,また,この手法をサポートするために,独自の時系列食品セキュリティデータベースを使用することができる。
論文 参考訳(メタデータ) (2023-01-23T08:41:46Z) - Simulating Personal Food Consumption Patterns using a Modified Markov
Chain [5.874935571318868]
本稿では,マルコフ連鎖モデルの改良と自己指導型学習を活用することにより,個人用食品消費データパターンをシミュレートする新しい枠組みを提案する。
実験の結果,ランダムシミュレーションやマルコフ連鎖法と比較して有望な性能を示した。
論文 参考訳(メタデータ) (2022-08-13T18:50:23Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
本稿では,クラウドソースによるストリートレベルの画像から重要な生活指標を予測するための,安価でスケーラブルで解釈可能なアプローチを提案する。
全国的に代表される世帯調査で収集した地上データと比較することにより,貧困,人口,健康の指標を正確に予測する上でのアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T18:12:12Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。