論文の概要: How Much You Ate? Food Portion Estimation on Spoons
- arxiv url: http://arxiv.org/abs/2405.08717v1
- Date: Sun, 12 May 2024 00:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:28:19.867836
- Title: How Much You Ate? Food Portion Estimation on Spoons
- Title(参考訳): いくら食べるか? スポンジの食事のポーション推定
- Authors: Aaryam Sharma, Chris Czarnecki, Yuhao Chen, Pengcheng Xi, Linlin Xu, Alexander Wong,
- Abstract要約: 現在の画像に基づく食品部分推定アルゴリズムは、ユーザが食事の画像を1、2回取ることを前提としている。
本稿では,静止型ユーザ向けカメラを用いて,機器上の食品の追跡を行う革新的なソリューションを提案する。
本システムは,スープやシチューなどの液状固形不均一混合物の栄養含量の推定に信頼性が高い。
- 参考スコア(独自算出の注目度): 63.611551981684244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring dietary intake is a crucial aspect of promoting healthy living. In recent years, advances in computer vision technology have facilitated dietary intake monitoring through the use of images and depth cameras. However, the current state-of-the-art image-based food portion estimation algorithms assume that users take images of their meals one or two times, which can be inconvenient and fail to capture food items that are not visible from a top-down perspective, such as ingredients submerged in a stew. To address these limitations, we introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils, not requiring any change of camera perspective after installation. The shallow depth of utensils provides a more favorable angle for capturing food items, and tracking them on the utensil's surface offers a significantly more accurate estimation of dietary intake without the need for post-meal image capture. The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews. Through a series of experiments, we demonstrate the exceptional potential of our method as a non-invasive, user-friendly, and highly accurate dietary intake monitoring tool.
- Abstract(参考訳): 食事摂取のモニタリングは健康な生活を促進する重要な側面である。
近年、コンピュータビジョン技術の進歩により、画像と深度カメラを用いて食事摂取監視が進められている。
しかし、現在の最先端画像に基づく食品部分推定アルゴリズムでは、ユーザーは食事の画像を1、2回撮影するが、これは不便であり、シチューに浸した材料など、トップダウンの視点では見えない食品を捕獲することができないと仮定している。
これらの制約に対処するため,我々は,固定式のユーザ向けカメラを用いて,設置後のカメラ視点の変更を必要とせず,機器上での食品の追跡を行う革新的なソリューションを導入した。
食材深度の浅い道具は、食品を捕食するのに有利な角度を与え、食材の表面でそれらを追跡することは、食事後のイメージキャプチャを必要とせず、食事の摂取量をはるかに正確に推定する。
本システムは,スープやシチューなどの液状固形不均一混合物の栄養含量の推定に信頼性が高い。
非侵襲的で、ユーザフレンドリで、高精度な食事摂取モニタリングツールとして、我々は一連の実験を通して、我々の方法の異常な可能性を実証した。
関連論文リスト
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
自己申告法はしばしば不正確であり、重大な偏見に悩まされる。
近年、食品画像から栄養情報を予測するためにコンピュータビジョン予測システムを用いた研究が進められている。
本稿では,様々なニューラルネットワークアーキテクチャを活用することにより,食事摂取量推定の有効性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-13T14:56:55Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
食事摂取推定のための2D食品シーンデータセットであるNutritionVerse-Realを導入する。
NutritionVerse-Realデータセットは、実生活における食品シーンのイメージを手作業で収集し、各成分の重量を測定し、各料理の食生活内容を計算することによって作成されました。
論文 参考訳(メタデータ) (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
食事の正確な摂取推定は、健康的な食事を支援するための政策やプログラムを伝える上で重要である。
最近の研究は、コンピュータービジョンと機械学習を使用して、食物画像から食事摂取を自動的に推定することに焦点を当てている。
我々は,84,984個の合成2D食品画像と関連する食事情報を用いた最初の大規模データセットであるNutritionVerse-Synthを紹介した。
また、リアルなイメージデータセットであるNutritionVerse-Realを収集し、リアル性を評価するために、251の料理の889のイメージを含む。
論文 参考訳(メタデータ) (2023-09-14T13:29:41Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
高齢者の4人に1人は栄養不良です。
機械学習とコンピュータビジョンは、食品の自動栄養トラッキング方法の約束を示す。
NutritionVerse-3Dは、105個の3D食品モデルの大規模な高解像度データセットである。
論文 参考訳(メタデータ) (2023-04-12T05:27:30Z) - Improving Food Detection For Images From a Wearable Egocentric Camera [20.221357110216776]
本稿では,眼鏡に装着可能なAIM(Automatic Ingestion Monitor)を紹介する。
AIMにはいくつかの利点があるが、AIMが撮影した画像は時にぼやけている。
本稿では,AIM画像センサが収集した前処理画像に対して,極めてぼやけた画像を取り除き,食品検出性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2023-01-19T03:12:05Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
栄養・食品群に基づく画像データベースを構築するための枠組みを提案する。
米国農務省食品栄養データベース(FNDDS)における食品群に基づく食品コードリンクプロトコルを設計する。
提案手法は16,114個の食品データセットを含む栄養・食品群に基づく画像データベースを構築するために用いられる。
論文 参考訳(メタデータ) (2022-06-05T02:41:44Z) - An Integrated System for Mobile Image-Based Dietary Assessment [7.352044746821543]
本稿では,食事摂取状況の把握と分析を行うモバイル型イメージベース食事アセスメントシステムの設計と開発について述べる。
本システムは,自然条件下での高品質な食品画像の収集が可能であり,新しい計算手法を開発するための基盤となるアノテーションを提供する。
論文 参考訳(メタデータ) (2021-10-05T00:04:19Z) - Saliency-Aware Class-Agnostic Food Image Segmentation [10.664526852464812]
クラス別食品画像分割法を提案する。
画像の前後の情報を利用すれば、目立たないオブジェクトを見つけることで、食べ物のイメージをセグメンテーションすることができる。
本手法は,食餌研究から収集した食品画像を用いて検証する。
論文 参考訳(メタデータ) (2021-02-13T08:05:19Z) - An End-to-End Food Image Analysis System [8.622335099019214]
食品の局所化, 分類, 部分サイズ推定を統合した画像に基づく食品分析フレームワークを提案する。
提案するフレームワークはエンドツーエンドであり,複数の食品を含む任意の食品画像として入力することができる。
本研究の枠組みは,栄養摂食調査から収集した実生活食品画像データセットを用いて評価する。
論文 参考訳(メタデータ) (2021-02-01T05:36:20Z) - MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring [1.5469452301122173]
食料モニタリングの欠如は、人口の体重増加に大きく寄与している。
食品画像を認識するためにコンピュータビジョンでいくつかのソリューションが提案されているが、栄養モニタリングに特化しているものはほとんどない。
本研究は, ユーザの食事と栄養摂取の自動モニタリングを支援するために, 画像に提示された食品を分類・分別するインテリジェントシステムの開発について述べる。
論文 参考訳(メタデータ) (2020-12-05T17:40:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。