論文の概要: The Application of Large Language Models on Major Depressive Disorder Support Based on African Natural Products
- arxiv url: http://arxiv.org/abs/2507.02947v1
- Date: Sat, 28 Jun 2025 21:05:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.460088
- Title: The Application of Large Language Models on Major Depressive Disorder Support Based on African Natural Products
- Title(参考訳): アフリカ産天然物に基づく抑うつ障害に対する大規模言語モデルの適用
- Authors: Linyan Zou,
- Abstract要約: うつ病の主な障害は21世紀における世界的健康上の課題の1つである。
アフリカの伝統医学は、新しい抗うつ薬の開発に貴重な資源を提供する。
本稿では,抑うつ支援のための大規模言語モデルとアフリカの天然物の統合について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Major depressive disorder represents one of the most significant global health challenges of the 21st century, affecting millions of people worldwide and creating substantial economic and social burdens. While conventional antidepressant therapies have provided relief for many individuals, their limitations including delayed onset of action, significant side effects, and treatment resistance in a substantial portion of patients have prompted researchers and healthcare providers to explore alternative therapeutic approaches (Kasneci et al.). African traditional medicine, with its rich heritage of plant-based remedies developed over millennia, offers a valuable resource for developing novel antidepressant treatments that may address some of these limitations. This paper examines the integration of large language models with African natural products for depression support, combining traditional knowledge with modern artificial intelligence technology to create accessible, evidence-based mental health support systems. The research presented here encompasses a comprehensive analysis of African medicinal plants with documented antidepressant properties, their pharmacological mechanisms, and the development of an AI-powered support system that leverages DeepSeek's advanced language model capabilities. The system provides evidence-based information about African herbal medicines, their clinical applications, safety considerations, and therapeutic protocols while maintaining scientific rigor and appropriate safety standards. Our findings demonstrate the potential for large language models to serve as bridges between traditional knowledge and modern healthcare, offering personalized, culturally appropriate depression support that honors both traditional wisdom and contemporary medical understanding.
- Abstract(参考訳): うつ病の大きな障害は21世紀における世界的健康上の課題の1つであり、世界中の何百万人もの人々に影響を与え、経済的、社会的な重荷を生み出している。
従来の抗うつ薬療法は、多くの患者を救済してきたが、治療の遅れ、重要な副作用、治療抵抗などの制限は、研究者や医療機関が代替治療法を探究するきっかけとなっている(Kasneci et al )。
アフリカ伝統医学は、千年にわたって開発された植物ベースの治療法の豊富な遺産を持ち、これらの制限に対処する新しい抗うつ薬の開発に貴重な資源を提供している。
本稿では、アフリカにおける抑うつ支援のための大規模言語モデルとアフリカの天然物の統合について検討し、従来の知識と現代の人工知能技術を組み合わせて、アクセス可能でエビデンスに基づくメンタルヘルス支援システムを構築する。
この研究は、抗うつ薬の特性を文書化したアフリカの薬草の包括的分析、薬理学的メカニズム、DeepSeekの高度な言語モデル機能を活用したAIを活用した支援システムの開発を含んでいる。
このシステムは、科学的厳格さと適切な安全基準を維持しつつ、アフリカの草原医学、その臨床応用、安全性の考慮、および治療プロトコルに関する証拠に基づく情報を提供する。
従来の知識と現代医療の橋渡しとして大きな言語モデルが役立つ可能性を示し,従来の知恵と現代医学的理解の両方を尊重する,パーソナライズされた文化的に適切な抑うつ支援を提供する。
関連論文リスト
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
医学における大きな言語モデル(LLM)は印象的な能力を実現しているが、体系的で透明で検証可能な推論を行う能力に重大なギャップが残っている。
本稿は、この新興分野に関する最初の体系的なレビューを提供する。
本稿では,学習時間戦略とテスト時間メカニズムに分類した推論強化手法の分類法を提案する。
論文 参考訳(メタデータ) (2025-08-01T14:41:31Z) - Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support [22.40301339126307]
我々は、臨床専門知識とAI推論のギャップを埋める医療言語モデルであるCitrusを紹介する。
このモデルは、シミュレーションされた専門的疾患推論データの大規模なコーパスに基づいて訓練される。
我々は、独自の医療診断対話データセットを含む、最終段階のトレーニングデータをリリースする。
論文 参考訳(メタデータ) (2025-02-25T15:05:12Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Natural Language-Assisted Multi-modal Medication Recommendation [97.07805345563348]
NLA-MMR(Natural Language-Assisted Multi-modal Medication Recommendation)を紹介する。
NLA-MMRは、患者視点から知識を学習し、医薬視点を共同で学習するために設計されたマルチモーダルアライメントフレームワークである。
本稿では,プレトレーニング言語モデル(PLM)を用いて,患者や医薬品に関するドメイン内知識を抽出する。
論文 参考訳(メタデータ) (2025-01-13T09:51:50Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
そこで本研究では,大規模言語モデル (LLM) を指導するためのプロンプトエンジニアリングの効果について検討する。
本稿では,プロンプトエンジニアリング手法を適切に利用することにより,プロトタイズされた治療を提供するモデルの能力を向上できることを実証する。
論文 参考訳(メタデータ) (2024-08-27T17:25:16Z) - Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models [1.03590082373586]
本稿では,知識ベースタスク,特に医療領域における幻覚を緩和するための既存の手法のスコーピング研究を行う。
この論文で取り上げられた主要な手法は、検索・拡張生成(RAG)ベースの技術、反復的なフィードバックループ、教師付き微調整、迅速なエンジニアリングである。
これらのテクニックは、一般的な文脈では有望だが、最新の専門知識と厳格な医療ガイドラインの厳格な遵守に対するユニークな要求のために、医療領域のさらなる適応と最適化を必要としている。
論文 参考訳(メタデータ) (2024-08-25T11:09:15Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
医学大言語モデル(Med-LLMs)の最近の進歩を辿る。
The wide-ranging application of Med-LLMs are investigated across various health domain。
公平性、説明責任、プライバシー、堅牢性を保証する上での課題について議論する。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
抑うつ検出は、ソーシャルメディア上の投稿履歴を分析して、個人が抑うつに苦しむかどうかを判断することを目的としている。
本稿では,医学的知識と大規模言語モデルの最近の進歩を融合した,DORISと呼ばれる新規なうつ病検出システムを提案する。
論文 参考訳(メタデータ) (2024-03-16T01:01:16Z) - The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism,
AI, and Health in Africa [16.7528939567041]
我々は,アフリカにおける公平性を考慮した不均質の軸を提案するために,スコーピングレビューを実施している。
次に,一般人口調査参加者672名と,ML,健康,政策の専門家28名と質的研究を行った。
我々の分析は、関心の属性として植民地主義に焦点を当て、人工知能(AI)、健康、植民地主義の相互作用を調べる。
論文 参考訳(メタデータ) (2024-03-05T22:54:15Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
我々は、欧州連合の一般データプライバシ規則の下で、精神医学クリニックでセラピストと患者との対話の収集を始める際に直面した課題について詳しく述べる。
本稿では、手順の各ステップの概要を述べ、この分野でのさらなる研究を動機付ける潜在的な落とし穴を指摘した。
論文 参考訳(メタデータ) (2022-11-22T15:51:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。