Optimization of Low-Latency Spiking Neural Networks Utilizing Historical Dynamics of Refractory Periods
- URL: http://arxiv.org/abs/2507.02960v1
- Date: Mon, 30 Jun 2025 04:42:19 GMT
- Title: Optimization of Low-Latency Spiking Neural Networks Utilizing Historical Dynamics of Refractory Periods
- Authors: Liying Tao, Zonglin Yang, Delong Shang,
- Abstract summary: The refractory period controls neuron spike firing rate, crucial for network stability and noise resistance.<n>We propose a historical dynamic refractory period (HDRP) model to estimate an initial refractory period and dynamically adjust its duration.<n>Our approach retains the binary characteristics of SNNs while enhancing both noise resistance and overall performance.
- Score: 4.020441924736797
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The refractory period controls neuron spike firing rate, crucial for network stability and noise resistance. With advancements in spiking neural network (SNN) training methods, low-latency SNN applications have expanded. In low-latency SNNs, shorter simulation steps render traditional refractory mechanisms, which rely on empirical distributions or spike firing rates, less effective. However, omitting the refractory period amplifies the risk of neuron over-activation and reduces the system's robustness to noise. To address this challenge, we propose a historical dynamic refractory period (HDRP) model that leverages membrane potential derivative with historical refractory periods to estimate an initial refractory period and dynamically adjust its duration. Additionally, we propose a threshold-dependent refractory kernel to mitigate excessive neuron state accumulation. Our approach retains the binary characteristics of SNNs while enhancing both noise resistance and overall performance. Experimental results show that HDRP-SNN significantly reduces redundant spikes compared to traditional SNNs, and achieves state-of-the-art (SOTA) accuracy both on static datasets and neuromorphic datasets. Moreover, HDRP-SNN outperforms artificial neural networks (ANNs) and traditional SNNs in noise resistance, highlighting the crucial role of the HDRP mechanism in enhancing the performance of low-latency SNNs.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs)<n>We propose SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR.
arXiv Detail & Related papers (2025-03-06T09:06:06Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Balanced Resonate-and-Fire Neurons [1.3223682837381137]
We introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons.
We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs.
arXiv Detail & Related papers (2024-02-02T12:57:21Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Networks [1.632439547798896]
Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient alternative to traditional Artificial Neural Networks (ANNs)
This paper focuses on addressing the dual objectives of enhancing the performance and efficiency of SNNs through the established SNN conversion framework.
arXiv Detail & Related papers (2023-11-24T03:43:59Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
Spiking Networks (SNNs) are a promising energy-efficient alternative to conventional artificial neural networks.
In this work, we focus on three key questions regarding inherent redundancy in SNNs.
We propose an Advance Attention (ASA) module to harness SNNs' redundancy.
arXiv Detail & Related papers (2023-08-16T08:58:25Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
Spiking neural networks (SNNs) are neural networks with asynchronous discrete and sparse characteristics.
We propose a multi-level firing (MLF) method based on the existing spiking-suppressed residual network (spiking DS-ResNet)
arXiv Detail & Related papers (2022-10-12T16:39:46Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.