論文の概要: Concept-based Adversarial Attack: a Probabilistic Perspective
- arxiv url: http://arxiv.org/abs/2507.02965v1
- Date: Mon, 30 Jun 2025 13:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.479741
- Title: Concept-based Adversarial Attack: a Probabilistic Perspective
- Title(参考訳): 概念に基づく敵対的攻撃 : 確率論的視点
- Authors: Andi Zhang, Xuan Ding, Steven McDonagh, Samuel Kaski,
- Abstract要約: 本稿では,単一イメージの摂動を超越した,概念に基づく敵攻撃フレームワークを提案する。
本手法は,1つのイメージを修正するのではなく,様々な逆の例を生成するために,概念全体の操作を行う。
- 参考スコア(独自算出の注目度): 23.571007534039474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a concept-based adversarial attack framework that extends beyond single-image perturbations by adopting a probabilistic perspective. Rather than modifying a single image, our method operates on an entire concept -- represented by a probabilistic generative model or a set of images -- to generate diverse adversarial examples. Preserving the concept is essential, as it ensures that the resulting adversarial images remain identifiable as instances of the original underlying category or identity. By sampling from this concept-based adversarial distribution, we generate images that maintain the original concept but vary in pose, viewpoint, or background, thereby misleading the classifier. Mathematically, this framework remains consistent with traditional adversarial attacks in a principled manner. Our theoretical and empirical results demonstrate that concept-based adversarial attacks yield more diverse adversarial examples and effectively preserve the underlying concept, while achieving higher attack efficiency.
- Abstract(参考訳): 本稿では,確率論的視点を採用することで,単一イメージの摂動を超えて展開する概念に基づく敵攻撃フレームワークを提案する。
一つの画像を変更するのではなく、確率的生成モデルや画像の集合で表される概念全体を操作して、多様な逆例を生成する。
もともとの分類やアイデンティティのインスタンスとして、結果の逆画像が識別可能であることを保証するため、概念を保存することが不可欠である。
この概念に基づく逆分布から抽出することにより、元の概念を維持できるが、ポーズ、視点、背景が異なる画像を生成し、分類器を誤解させる。
数学的には、この枠組みは原則的に従来の敵攻撃と一致している。
理論的,実証的な結果から,概念に基づく敵攻撃はより多様な敵の例を生じさせ,その基礎となる概念を効果的に維持し,より高い攻撃効率を達成できることを示した。
関連論文リスト
- ACE: Attentional Concept Erasure in Diffusion Models [0.0]
Attentional Concept Erasureは、クローズドフォームのアテンション操作と軽量な微調整を統合している。
ACEは最先端の概念の除去とロバスト性を実現する。
従来の方法と比較して、ACEは一般性(概念と関連する用語)と特異性(無関係なコンテンツを保存する)のバランスが良い。
論文 参考訳(メタデータ) (2025-04-16T08:16:28Z) - Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance [41.6755826072905]
ゼロショット画像認識タスクでは、人間は目に見えないカテゴリを分類する際、顕著な柔軟性を示す。
既存の視覚言語モデルは、しばしば準最適プロンプトエンジニアリングのため、現実世界のアプリケーションでは性能が劣る。
これらの問題に対処するために,概念誘導型人間ライクなベイズ推論フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-20T06:20:13Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
本研究は,基本生成モデルから複数の特定の概念を対象とする除去を可能にする新しいパラダイムである連続的アンラーニングを導入する。
本稿では,望ましくない概念の生成を選択的に解き放つような一般化エロージョン(DUGE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-17T23:17:16Z) - OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - CusConcept: Customized Visual Concept Decomposition with Diffusion Models [13.95568624067449]
ベクトルを埋め込んだカスタマイズされた視覚概念を抽出する2段階のフレームワークCusConceptを提案する。
最初の段階では、CusConceptは語彙誘導概念分解機構を採用している。
第2段階では、生成した画像の忠実度と品質を高めるために、共同概念の洗練を行う。
論文 参考訳(メタデータ) (2024-10-01T04:41:44Z) - ConceptPrune: Concept Editing in Diffusion Models via Skilled Neuron Pruning [10.201633236997104]
大規模テキスト・画像拡散モデルでは、印象的な画像生成能力が示されている。
提案するConceptPruneでは,まず,望ましくない概念を生成するための事前学習モデル内の重要な領域を同定する。
芸術的スタイル、ヌード性、オブジェクトの消去、ジェンダーのデバイアスなど、さまざまな概念に対する実験は、ターゲットのコンセプトをごくわずかに刈って効率よく消去できることを実証している。
論文 参考訳(メタデータ) (2024-05-29T16:19:37Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
拡散モデルの合成特性を使い、単一の画像生成において複数のプロンプトを利用することができる。
本論では, 画像生成の可能なすべてのアプローチを, 相手が適用可能な拡散モデルで検討することが重要であると論じる。
論文 参考訳(メタデータ) (2024-04-21T16:35:16Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
テキストから画像への拡散モデルにおける概念消去は、対象概念に関連する画像の生成から事前学習された拡散モデルを無効にすることを目的としている。
軽量エローザ(レセラー)による信頼性概念消去の提案
論文 参考訳(メタデータ) (2023-11-29T15:19:49Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - Content-based Unrestricted Adversarial Attack [53.181920529225906]
本稿では,コンテンツベース非制限攻撃という新たな非制限攻撃フレームワークを提案する。
自然像を表す低次元多様体を利用することで、像を多様体上に写像し、その逆方向に沿って最適化する。
論文 参考訳(メタデータ) (2023-05-18T02:57:43Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。