GAF-Guard: An Agentic Framework for Risk Management and Governance in Large Language Models
- URL: http://arxiv.org/abs/2507.02986v2
- Date: Tue, 08 Jul 2025 15:44:49 GMT
- Title: GAF-Guard: An Agentic Framework for Risk Management and Governance in Large Language Models
- Authors: Seshu Tirupathi, Dhaval Salwala, Elizabeth Daly, Inge Vejsbjerg,
- Abstract summary: Large Language Models (LLMs) continue to be increasingly applied across various domains.<n>This paper introduces the agentic framework for LLM governance that places the user, the use-case, and the model itself at the center.<n>The framework is designed to detect and monitor risks associated with the deployment of LLM based applications.
- Score: 2.2713444594182843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) continue to be increasingly applied across various domains, their widespread adoption necessitates rigorous monitoring to prevent unintended negative consequences and ensure robustness. Furthermore, LLMs must be designed to align with human values, like preventing harmful content and ensuring responsible usage. The current automated systems and solutions for monitoring LLMs in production are primarily centered on LLM-specific concerns like hallucination etc, with little consideration given to the requirements of specific use-cases and user preferences. This paper introduces GAF-Guard, a novel agentic framework for LLM governance that places the user, the use-case, and the model itself at the center. The framework is designed to detect and monitor risks associated with the deployment of LLM based applications. The approach models autonomous agents that identify risks, activate risk detection tools, within specific use-cases and facilitate continuous monitoring and reporting to enhance AI safety, and user expectations. The code is available at https://github.com/IBM/risk-atlas-nexus-demos/tree/main/gaf-guard.
Related papers
- LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - Les Dissonances: Cross-Tool Harvesting and Polluting in Multi-Tool Empowered LLM Agents [15.15485816037418]
This paper presents the first systematic security analysis of task control flows in multi-tool-enabled LLM agents.<n>We identify a novel threat, Cross-Tool Harvesting and Polluting (XTHP), which includes multiple attack vectors.<n>To understand the impact of this threat, we developed Chord, a dynamic scanning tool designed to automatically detect real-world agent tools susceptible to XTHP attacks.
arXiv Detail & Related papers (2025-04-04T01:41:06Z) - Exposing the Ghost in the Transformer: Abnormal Detection for Large Language Models via Hidden State Forensics [5.384257830522198]
Large Language Models (LLMs) in critical applications have introduced severe reliability and security risks.<n>These vulnerabilities have been weaponized by malicious actors, leading to unauthorized access, widespread misinformation, and compromised system integrity.<n>We introduce a novel approach to detecting abnormal behaviors in LLMs via hidden state forensics.
arXiv Detail & Related papers (2025-04-01T05:58:14Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - A Superalignment Framework in Autonomous Driving with Large Language Models [2.650382010271]
Large language models (LLMs) and multi-modal large language models (MLLMs) are extensively used in autonomous driving.
Despite their importance, the security aspect of LLMs in autonomous driving remains underexplored.
This research introduces a novel security framework for autonomous vehicles, utilizing a multi-agent LLM approach.
arXiv Detail & Related papers (2024-06-09T05:26:38Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations.
We present our efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms.
arXiv Detail & Related papers (2024-03-09T21:07:16Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.