Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
- URL: http://arxiv.org/abs/2403.06009v3
- Date: Mon, 19 Aug 2024 14:24:30 GMT
- Title: Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
- Authors: Swapnaja Achintalwar, Adriana Alvarado Garcia, Ateret Anaby-Tavor, Ioana Baldini, Sara E. Berger, Bishwaranjan Bhattacharjee, Djallel Bouneffouf, Subhajit Chaudhury, Pin-Yu Chen, Lamogha Chiazor, Elizabeth M. Daly, Kirushikesh DB, Rogério Abreu de Paula, Pierre Dognin, Eitan Farchi, Soumya Ghosh, Michael Hind, Raya Horesh, George Kour, Ja Young Lee, Nishtha Madaan, Sameep Mehta, Erik Miehling, Keerthiram Murugesan, Manish Nagireddy, Inkit Padhi, David Piorkowski, Ambrish Rawat, Orna Raz, Prasanna Sattigeri, Hendrik Strobelt, Sarathkrishna Swaminathan, Christoph Tillmann, Aashka Trivedi, Kush R. Varshney, Dennis Wei, Shalisha Witherspooon, Marcel Zalmanovici,
- Abstract summary: Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations.
We present our efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms.
- Score: 76.19419888353586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Related papers
- Towards Inference-time Category-wise Safety Steering for Large Language Models [3.712541089289745]
Large language models (LLMs) have seen unprecedented advancements in capabilities and applications across a variety of use-cases.
The fragile nature of LLMs warrants additional safety steering steps via training-free, inference-time methods.
Unlike recent inference-time safety steering works, in this paper we explore safety steering of LLM outputs using category-specific steering vectors.
arXiv Detail & Related papers (2024-10-02T02:02:06Z) - Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
We introduce PADL, a new solution able to generate image-specific perturbations using a symmetric scheme of encoding and decoding based on cross-attention.
Our method generalizes to a range of unseen models with diverse architectural designs, such as StarGANv2, BlendGAN, DiffAE, StableDiffusion and StableDiffusionXL.
arXiv Detail & Related papers (2024-09-26T15:16:32Z) - Zero-Shot Machine-Generated Text Detection Using Mixture of Large Language Models [35.67613230687864]
Large Language Models (LLMs) are trained at scale and endowed with powerful text-generating abilities.
We propose a new, theoretically grounded approach to combine their respective strengths.
Our experiments, using a variety of generator LLMs, suggest that our method effectively increases the robustness of detection.
arXiv Detail & Related papers (2024-09-11T20:55:12Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - SLM as Guardian: Pioneering AI Safety with Small Language Models [6.799423428734095]
Internalizing safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness.
In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation.
We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
arXiv Detail & Related papers (2024-05-30T08:03:15Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Towards Building Self-Aware Object Detectors via Reliable Uncertainty
Quantification and Calibration [17.461451218469062]
In this work, we introduce the Self-Aware Object Detection (SAOD) task.
The SAOD task respects and adheres to the challenges that object detectors face in safety-critical environments such as autonomous driving.
We extensively use our framework, which introduces novel metrics and large scale test datasets, to test numerous object detectors.
arXiv Detail & Related papers (2023-07-03T11:16:39Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.