論文の概要: Completion of the DrugMatrix Toxicogenomics Database using 3-Dimensional Tensors
- arxiv url: http://arxiv.org/abs/2507.03024v1
- Date: Wed, 02 Jul 2025 19:15:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.537768
- Title: Completion of the DrugMatrix Toxicogenomics Database using 3-Dimensional Tensors
- Title(参考訳): 3次元テンソルを用いた薬物マトリックストキシコゲノミクスデータベースの完成
- Authors: Tan Nguyen, Guojing Cong,
- Abstract要約: 本稿では, 薬物マトリックス毒性遺伝学データセットの完成のためのテンソル補修手法について検討する。
以上の結果から,新しいテンソル法が元のデータ分布をより正確に反映することを示す。
- 参考スコア(独自算出の注目度): 3.396731589928943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore applying a tensor completion approach to complete the DrugMatrix toxicogenomics dataset. Our hypothesis is that by preserving the 3-dimensional structure of the data, which comprises tissue, treatment, and transcriptomic measurements, and by leveraging a machine learning formulation, our approach will improve upon prior state-of-the-art results. Our results demonstrate that the new tensor-based method more accurately reflects the original data distribution and effectively captures organ-specific variability. The proposed tensor-based methodology achieved lower mean squared errors and mean absolute errors compared to both conventional Canonical Polyadic decomposition and 2-dimensional matrix factorization methods. In addition, our non-negative tensor completion implementation reveals relationships among tissues. Our findings not only complete the world's largest in-vivo toxicogenomics database with improved accuracy but also offer a promising methodology for future studies of drugs that may cross species barriers, for example, from rats to humans.
- Abstract(参考訳): 本稿では, 薬物マトリックス毒性遺伝学データセットの完成のためのテンソル補修手法について検討する。
我々の仮説は、組織、治療、および転写学的測定を含むデータの3次元構造を保存し、機械学習の定式化を活用することにより、我々のアプローチは最先端の結果よりも良くなるというものである。
以上の結果から,新しいテンソル法は元のデータ分布をより正確に反映し,臓器特異的な変動を効果的に捉えることが示唆された。
提案手法は従来の正準多進分解法と2次元行列分解法と比較して平均二乗誤差と平均絶対誤差を低減した。
さらに、非負のテンソル補完実装は組織間の関係を明らかにする。
我々の発見は、精度が向上した世界最大規模の毒性遺伝学データベースを完成させるだけでなく、例えばラットからヒトまで、種の障壁を越える可能性のある薬物の研究にも有望な方法論を提供する。
関連論文リスト
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [51.55434084913129]
薬物発見において、研究を進める上で最も重要な化合物は、しばしば訓練セットを越えている。
本稿では,未ラベルデータを利用したメタラーニングに基づく新しい手法を提案する。
実世界のデータセットに挑戦する上で、大きなパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-06-13T15:27:40Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - High-dimensional Measurement Error Models for Lipschitz Loss [2.6415509201394283]
リプシッツ損失関数のクラスに対する高次元計測誤差モデルを開発する。
我々の推定器は、適切な実現可能な集合に属するすべての推定器の中で、$L_1$ノルムを最小化するように設計されている。
有限標本統計誤差境界と符号の整合性の観点から理論的な保証を導出する。
論文 参考訳(メタデータ) (2022-10-26T20:06:05Z) - LogGENE: A smooth alternative to check loss for Deep Healthcare
Inference Tasks [0.0]
本研究では、遺伝子発現のようなデータセットにおけるディープニューラルネットワークに基づく推論手法を開発する。
本研究では,特定の住宅維持遺伝子群に対する完全条件量子化を予測するために,Quantile Regressionフレームワークを採用する。
本稿では,チェック損失のスムーズな代替としてログコッシュを提案する。
論文 参考訳(メタデータ) (2022-06-19T06:46:39Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
本稿では、因果的観点からの包括的ミニマックス分析について述べる。
最小の最悪のリスクを持つサブセットを探索する効率的なアルゴリズムを提案する。
本手法の有効性と有効性は, 合成データとアルツハイマー病の診断で実証された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - DIVERSE: bayesian Data IntegratiVE learning for precise drug ResponSE
prediction [27.531532648298768]
DIVERSEは、細胞株、薬物、遺伝子相互作用のデータから薬物応答を予測するフレームワークです。
ステップ的な方法でデータソースを体系的に統合し、各追加データセットの重要性を順番に検証する。
3つの最先端のアプローチを含む他の5つの方法を明らかに上回る。
論文 参考訳(メタデータ) (2021-03-31T12:40:00Z) - Joint Dimensionality Reduction for Separable Embedding Estimation [43.22422640265388]
異なるソースからのデータの低次元埋め込みは、機械学習、マルチメディア情報検索、バイオインフォマティクスにおいて重要な役割を果たす。
異なるモダリティのデータや異なる種類の実体からのデータを表す2つの特徴ベクトルに対して,線形埋め込みを共同で学習する,教師付き次元還元法を提案する。
提案手法は,他の次元減少法と比較し,遺伝子・退化関連を予測するための両線形回帰の最先端手法と比較した。
論文 参考訳(メタデータ) (2021-01-14T08:48:37Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。