From Turing to Tomorrow: The UK's Approach to AI Regulation
- URL: http://arxiv.org/abs/2507.03050v1
- Date: Thu, 03 Jul 2025 10:54:43 GMT
- Title: From Turing to Tomorrow: The UK's Approach to AI Regulation
- Authors: Oliver Ritchie, Markus Anderljung, Tom Rachman,
- Abstract summary: We argue for updated legal frameworks on copyright, discrimination, and AI agents.<n>If the UK gets AI regulation right, it could demonstrate how democratic societies can harness AI's benefits while managing its risks.
- Score: 0.8339209730515343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The UK has pursued a distinctive path in AI regulation: less cautious than the EU but more willing to address risks than the US, and has emerged as a global leader in coordinating AI safety efforts. Impressive developments from companies like London-based DeepMind began to spark concerns in the UK about catastrophic risks from around 2012, although regulatory discussion at the time focussed on bias and discrimination. By 2022, these discussions had evolved into a "pro-innovation" strategy, in which the government directed existing regulators to take a light-touch approach, governing AI at point of use, but avoided regulating the technology or infrastructure directly. ChatGPT arrived in late 2022, galvanising concerns that this approach may be insufficient. The UK responded by establishing an AI Safety Institute to monitor risks and hosting the first international AI Safety Summit in 2023, but - unlike the EU - refrained from regulating frontier AI development in addition to its use. A new government was elected in 2024 which promised to address this gap, but at the time of writing is yet to do so. What should the UK do next? The government faces competing objectives: harnessing AI for economic growth and better public services while mitigating risk. In light of these, we propose establishing a flexible, principles-based regulator to oversee the most advanced AI development, defensive measures against risks from AI-enabled biological design tools, and argue that more technical work is needed to understand how to respond to AI-generated misinformation. We argue for updated legal frameworks on copyright, discrimination, and AI agents, and that regulators will have a limited but important role if AI substantially disrupts labour markets. If the UK gets AI regulation right, it could demonstrate how democratic societies can harness AI's benefits while managing its risks.
Related papers
- Public Opinion and The Rise of Digital Minds: Perceived Risk, Trust, and Regulation Support [4.982210700018631]
This study examines how public trust in institutions and AI technologies, along with perceived risks, shape preferences for AI regulation.<n>Individuals with higher trust in government favor regulation, while those with greater trust in AI companies and AI technologies are less inclined to support restrictions.
arXiv Detail & Related papers (2025-04-30T17:56:23Z) - AI threats to national security can be countered through an incident regime [55.2480439325792]
We propose a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems.<n>Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident'<n>The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures.
arXiv Detail & Related papers (2025-03-25T17:51:50Z) - Superintelligence Strategy: Expert Version [64.7113737051525]
Destabilizing AI developments could raise the odds of great-power conflict.<n>Superintelligence -- AI vastly better than humans at nearly all cognitive tasks -- is now anticipated by AI researchers.<n>We introduce the concept of Mutual Assured AI Malfunction.
arXiv Detail & Related papers (2025-03-07T17:53:24Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance [18.290959557311552]
Public sector use of AI has been on the rise for the past decade, but only recently have efforts to enter it entered the cultural zeitgeist.
While simple to articulate, promoting ethical and effective roll outs of AI systems in government is a notoriously elusive task.
arXiv Detail & Related papers (2024-04-23T01:45:38Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Taking control: Policies to address extinction risks from AI [0.0]
We argue that voluntary commitments from AI companies would be an inappropriate and insufficient response.
We describe three policy proposals that would meaningfully address the threats from advanced AI.
arXiv Detail & Related papers (2023-10-31T15:53:14Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AI is a proposal designed with adaptability in mind.
It involves governments setting outcome-based targets for AI companies to achieve.
We warn that it is alarmingly easy to stumble on incentives which would prevent Regulatory Markets from achieving this goal.
arXiv Detail & Related papers (2023-03-06T14:42:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.